
VALSTS DIGITĀLĀS ATTĪSTĪBAS AĢENTŪRA

API Pārvaldnieka publicētāju un izstrādātāju portāls

Skaidrojumi un izmantošana

v2.8

2

API Publicētāju un API Izstrādātāju portāls - Instrukcija un skaidrojumi

Šī dokumenta mērķis ir sniegt API Publicētāju (Publisher) un API Izstrādātāju (Devportal) portālu sadaļu un

lauku skaidrojumus API Pārvaldnieka lietotājiem, kas publicē vai abonē API programmas saskarnes, norādes

par servisu testēšanu izmantojot Postman, kā arī piekļuves talona iegūšanu izmantojot sertifikātu.

Kopā ar šo dokumentu aicinām izmantot Datu apmaiņas izveides vadlīniju dokumentu, kas ir pieejams

https://www.vdaa.gov.lv/lv/api-parvaldnieks sadaļā "Rokasgrāmatas un vadlīnijas", kur ir aprakstītas datu

apmaiņas iespējas, to veidošana, izsaukumu piemēri un citi ieteikumi, kā arī informācija, kura sniedz

atbalstu datu apmaiņu izstrādātājiem.

1. API Publicētāju portāls
API Publicētāju (Publisher) portāls paredzēts API reģistrēšanai, publicēšanai un pārvaldībai. Portāls

lietotājam tiek attēlots valodā, kāda ir iestatīta interneta pārlūkprogrammā.

1.1 Sadaļa “Create API”
Pievienot jaunu API Publicētāju portālā iespējams sadaļā “CREATE API”:

Izvēlas veidu, kā pievienot API, atzīmējot vienu no trim opcijām:

REST API

a. Start From Scratch – izvēlas gadījumā, ja publicētājam nav gatavas Swagger definīcijas un

API apraksts tiks veidots no jauna, lauku nosaukumus un definīcijas jāveido atbilstoši

aktuālākai Datu apmaiņas izveides vadlīniju dokumenta versijai;

https://www.vdaa.gov.lv/lv/api-parvaldnieks
https://viss.gov.lv/-/media/Files/VRAA/Dokumentacija/Koplietosanas_komponentes/APIparvaldnieks/Dokumentacija/VISS2016VDLDAPMv223.ashx

3

Servisa reģistrācijas skatā attēlojas šādi lauki, kurus ir nepieciešams aizpildīt un daļēji tie aizpildās

automātiski:

• Authority - Iestādes identifikators, kurš jānorāda tādā pat formātā kā ir klasifikatoru katalogā, piemēram,

VARAM.VRAA

• Name – Servisa nosaukums, kurš nevar saturēt speciālos simbolus

• Context – Lauks aizpildās automātiski, ar informāciju no “Servisa veids”+”Authority”+”Name”. Šajā

gadijumā API-VARAM_VRAA-MansApiServiss

• Version – Versijai jābūt norādītai noteiktā formāta notācijā – “v{Major}_{Minor}”, piemēram, v1_0

• Endpoint – Jāievada servisa galapunkts (Endpoint)

Servisa pilnais nosaukums būs tāds pats, kā šajā skatā redzamais ‘Context’

b. Import Open API – izvēlas gadījumā, ja API Swagger definīcija jau ir iepriekš izveidota un to

ir nepieciešams importēt API Publisher portālā.

Lai izveidotu un publicētu REST API, jāpievieno Swagger, augšupielādējot API Swagger definīcijas

.json failu vai norādot API galapunkta URL izvēloties attiecīgo punktu “Create an API using an

OpenAPI definition” solī.

Swagger definīcija ir formāts, kādā apraksta REST API.

4

Pēc swagger definīcijas augšupielādes vai API galapunkta URL ievades un pārejas uz nākamo soli,

attēlosies servisa reģistrācijas skats, kura aizpildīšana aprakstīta iepriekš.

SOAP API – izvēlas gadījumā, ja ir iepriekš izveidots SOAP galapunkts.

Import WSDL

Lai izveidotu API ar SOAP galapunktu, ir jāizvēlas SOAP servisa Implementācijas tipu, kas varētu

būt vai Pass Through (API Pārvaldnieks kā SOAP Servisa vārteja) vai Generate Rest APIs (API

Pārvaldnieks eksponē SOAP servisu uz āru kā REST API).

- Izvēloties “Pass Through” – tiek izveidots proxy SOAP pieprasījumiem, kas iet uz API Gateway.

5

- Izvēloties “Generate Rest APIs” – tiek izveidota REST API definīcija no norādītās WSDL URL.

API definīcijas metodes tiek ielasītas automātiski no WSDL saites, taču API definīciju iespējams rediģēt

atbilstoši Open API specifikācijai.

REST API metodes sasaistītas ar atbilstošajām SOAP operācijām, izmantojot Swagger lauku x-wso2-soap.

Piemēram:

/Endpoint:

post:

operationId: EndpointOperation

parameters:

...

x-wso2-soap:

soap-action: " https://www.crcind.com/csp/samples/SOAP.Demo.CLS"

soap-operation: SoapEndpointOperation

namespace: " https://www.crcind.com/csp/samples "

x-soap-version: "1.2"

Apraksts SOAP API publicēšanai:

Expose a SOAP service as a REST API

Generate REST API from SOAP Backend

Create and Publish a SOAP API

Nākamajā solī tiks attēlots servisa reģistrācijas skats:

Servisa reģistrācijas skatā attēlojas šādi lauki, kurus ir nepieciešams aizpildīt un daļēji tie aizpildās

automātiski:

• Authority - Iestādes identifikators, kurš jānorāda tādā pat formātā kā ir klasifikatoru katalogā, piemēram,

VARAM.VRAA

• Name – Servisa nosaukums, kurš nevar saturēt speciālos simbolus

• Context – Lauks aizpildās automātiski, ar informāciju no “Servisa veids”+”Authority”+”Name”. Šajā

gadijumā ISS-VARAM_VRAA-ApiTestSOAP

• Version – Versijai jābūt norādītai noteiktā formāta notācijā – “v{Major}_{Minor}”, piemēram, v1_0

• Endpoint – Jāievada servisa galapunkts (Endpoint)

Servisa pilnais nosaukums būs tāds pats, kā šajā skatā redzamais ‘Context’

https://swagger.io/specification/
https://apim.docs.wso2.com/en/latest/tutorials/expose-a-soap-service-as-a-rest-api/
https://apim.docs.wso2.com/en/4.0.0/design/create-api/create-rest-api/generate-rest-api-from-soap-backend/
https://docs.wso2.com/display/AM260/Create+and+Publish+a+SOAP+API

6

GraphQL - API vaicājumu valoda, kas strādā ar jūsu esošajiem datiem. GraphQL nodrošina

saprotamu API datu aprakstu un pieprasījumos sniedz klientiem iespēju pieprasīt un saņemt tieši tos

datus no servisa, kas viņiem nepieciešami.

Import GraphQL SDL ļauj pievienot API Pārvaldniekā servisu aprakstus kas izmanto GraphQL

vaicājumu valodu. SDL datnēm jābūt .graphql paplašinājumā un viņu saturam jāatbilst text/plain

formātam.. SDL shēmas apraksts un cita vispārīga informācija ir pieejama noderīgo saišu

apakšsadaļā.

Pirmajā solī nepieciešams augšupielādēt GraphQL SDL definīciju:

Nākamajā solī tiks attēlots servisa reģistrācijas skats:

Servisa reģistrācijas skatā attēlojas šādi lauki, kurus ir nepieciešams aizpildīt un daļēji tie aizpildās

automātiski:

• Authority - Iestādes identifikators, kurš jānorāda tādā pat formātā kā ir klasifikatoru katalogā, piemēram,

VARAM.VRAA

• Name – Servisa nosaukums, kurš nevar saturēt speciālos simbolus

• Context – Lauks aizpildās automātiski, ar informāciju no “Servisa veids”+”Authority”+”Name”. Šajā

gadijumā GQL-VARAM_VRAA-ApiTestGQL

• Version – Versijai jābūt norādītai noteiktā formāta notācijā – “v{Major}_{Minor}”, piemēram, v1_0

• Endpoint – Jāievada servisa galapunkts (Endpoint)

7

Servisa pilnais nosaukums būs tāds pats, kā šajā skatā redzamais ‘Context’

GraphQL servisu apraksts un noderīgas saites:

https://graphql.org/learn/

https://graphql.org/learn/schema/

1.2 Sadaļa “Overview”

Vispārīgā informācija

Standarta lauku vērtības tiek ielasītas no pievienotās Swagger definīcijas, taču līdz API publicēšanai tās ir

iespējams rediģēt. Nosaukuma, Konteksta, Versijas laukos ievadītā informācija pēc API publicēšanas nav

maināma, līdz ar to jau sākotnēji reģistrējot API, nosaukuma veidošanai un versionēšanai ir jāizmanto

principus, kas aprakstīti aktuālākajā Datu apmaiņas izveides vadlīniju dokumentā!

https://graphql.org/learn/
https://graphql.org/learn/schema/
https://viss.gov.lv/-/media/Files/VRAA/Dokumentacija/Koplietosanas_komponentes/APIparvaldnieks/Dokumentacija/VISS2016VDLDAPMv221.ashx

8

Izvēlne Develop (a) nav pieejama rediģēšanai, jo tā tiek aizpildīta pirmajā solī. Pievienojot jau eksistējošu

API, API metodes tiek norādītas automātiski, jo tie aprakstītas Swagger definīcijā. Papildus tam, galapunktu

iestatījumus var rediģēt sadaļā Endpoint. Ja API tiek veidots bez Swagger definīcijas, rediģēšanai Develop

solī obligāti jāizmanto Endpoint(b) izvēlne, lai varētu veikt metožu un galapunktu konfigurāciju.

Izvēlnē Endpoint(b) jāizvēlas un jānokonfigurē atbilstošu galapunkta tipu un galapunkta saiti. Rediģējot un

pievienojot galapunktu saites, obligāti kā pamata vidi ir jāizmanto Production. Pārējie tipi ir pieejami

rediģēšanai, bet to izmantošana ir atkarīga no konkrēta klienta vajadzībām

Business Plan(c) izvēlnē var konfigurēt Servisa pieejamību klientiem. Pēc noklusējuma pieprasījumu skaits

nav ierobežots, bet pēc publicētāja velmēm var ļaut klientiem izvēlēties sev piemērotus izsaukumu skaita

ierobežojumus. API abonēšanas plāni var būt sekojoši:

• Bronze : Allows 1000 requests per minute

• Gold : Allows 5000 requests per minute

• Silver : Allows 2000 requests per minute

• Unlimited : Allows unlimited requests (pievienots pēc noklusējuma)

API definīciju, iespējams rediģēt vai tai pievienot jaunas metodes nospiežot pogu “Show More” pie

Overview apakšpunkta Resources.

9

Sadaļā Resources izvērstajā skatā ir pieejama jauno metožu pievienošana un API darbināšanai nepieciešamo

metožu pārvaldības funkcionalitāte. Lai varētu pievienot publicētam servisam jauno metodi ir nepieciešams

izpildīt sekojošus soļus:

1. Atvērt sadaļu Resources;

2. Izvēlēties Operāciju limitēšanas līmeni (pēc noklusējuma ir Operational Level);

3. Izvēlēties nepieciešamo metode no saraksta;

4. Noradīt konkrēta galapunkta saites modeli (parasti “/foo” formātā);

5. Pievienot modeli servisam;

6. Saglabāt izmaiņas.

Turpmāk pievienoto modeli ir nepieciešams aprakstīt, pievienot nepieciešamos atribūtus un obligāti

aizsargāt, piešķirot tai attiecīgu atļauju atbilstoši Datu apmaiņas izveides vadlīniju dokumentā aprakstītajai

procedūrai (5.4.3.4. Scope pievienošana).

Darbības ir ieteicams izpildīt sekojošā secībā:

https://www.vdaa.gov.lv/lv/media/8058/download?attachment

10

1. Izvērst nepieciešamo modeli;

2. Summary & Description sadaļā sniegt Metodes aprakstu;

3. Summary & Description sadaļā aizpildīt vispārīgu informāciju, ja tāda ir;

4. Operation Governance sadaļā ir nepieciešams ieslēgt Security parametru atļauju funkcionalitātes ieslēgšanai,

turpat pēc nepieciešamības iestatīt pieejamības politiku (nav obligāti aizpildāms parametrs);

5. Operation Governance sadaļā jāpievieno jau izveidotu atļauju vai jāizveido no jauna (Create New Scope

izvēlne) atļauju konkrētai metodei;

6. Jāveic servisa izsaukumiem nepieciešamo parametru konfigurāciju, atbalstāmie parametri atgriežamiem

datiem ir ierobežoti atbilstoši RFC 6838 specifikācijai:

- application/json

- application/xml

- application/x-www-form-urlencoded

- multipart/form-data

- text/plain; charset=utf-8

- text/html

- application/pdf

- image/png

7. Pēc nepieciešamības var veikt izmaiņas servisa Swagger datnē (Swagger parāda servisa iespējas bez

piekļuves tā pirmkodam) izvēloties Edit API Definition izvēlni, piemēru var apskatīt 1. pielikumā;

8. Saglabāt konfigurācijā veiktās izmaiņas.

Pievienotās metodes ir iespējams rediģēt, piemēram, pievienojot tās aprakstu vai papildu parametrus, kā arī

dzēst (nospiežot ikonu).

• Consumes – datu formāts, kādā dati tiek padoti. Attiecas tikai uz metodēm POST, PUT un PATCH.

GET metodes gadījumā vērtība nav jānorāda. Plašāks apraksts.

• Parameter Name – parametra, kuru izmanto konkrētā metode, apraksts

• Parameter Type – jānorāda viens no parametra veidiem. Vienai metodei var būt dažādi parametri.

a. query – vaicājums jeb atlases kritēriji. Parametru sāk ar “?”, piemēram,

b. header – tiek iekļauti pieprasījuma galvenē, parasti saistīti ar autorizāciju, piemēram, kad

jānorāda lietotājvārds.

c. formData – izmanto augšupielādes apmēra noteikšanai

- application/x-www-form-urlencoded – izmanto POST metodes gadījumā, lai padotu

vienkāršas vērtības. Nav piemērots bināru datu padošanai.

- multipart/form-data – ļauj augšupielādēt binārus datus un dažāda tipa failus. Katram laukam

ir noteikts apjoms.

• Data Type– manuāli norāda padoto datu tipu, piemēram, integer (skaitļi) / string (simbolu virkne) /

file / u.c.

http://tools.ietf.org/html/rfc6838
https://swagger.io/docs/specification/2-0/mime-types/

11

• Required – norāda, vai parametrs ir obligāts

Atļauju (scope) pievienošana

5. solī aprakstītajai servisa aizsargāšanai, jeb konkrētai metodes atļaujas (scope) piešķiršanai ir

nepieciešams izveidot jaunu atļauju sadaļā Local Scopes, vai nospiežot pogu Create New Scope pie metodes

modeļa izveides.

Laukā “Name” nepieciešams ievadīt atļaujas nosaukumu. Atļaujas nosaukums var sastāvēt no brīvi izvēlētas

burtu vai ciparu virknes bez speciālajiem simboliem. Pēc atļaujas nosaukuma un apraksta definēšanas

nepieciešams saglabāt jaunizveidoto atļauju

Atļaujas pilnais nosaukums, kurš būs arī jāizmanto atļauju piešķiršanai PFAS Uzticampo pušu sadaļā un

API izsaukumos veidojas automātiski no “API nosauums + versija” + “Name”.

12

Pēc atļaujas saglabāšanas, to iespējams sasaistīt ar konkrēto metodi (vai vairākām metodēm) Resources

sadaļā, kā tas paradīts zemāk attēlā.

1. Jāizvēlas ar metodi sasaistāmo atļauju;

2. Jāsaglabā izmaiņas konfigurācijā.

1.3 Servisa atribūtu aizpilde

Pēc Develop soļa un pirms servisa izmitināšanas ir obligāti jāveic Servisa parametru aizpildi.

1.3.1 Basic Info sadaļa

Design Configuration lauki (ar bold atzīmēti obligāti aizpildāmie lauki):

• API bilde;

• Edit Description, jeb servisa apraksts;

• Publisher Access Control

o All – servisu varēs rediģēt visi lietotāji ar administratora lomu (API Publisher);

o Restricted by role(s) – servisu publicētāju portālā varēs rediģēt lietotāji ar speciāli izveidotu lomu

(API Publisher);

• Developer Portal Visibility

o Public – servisu varēs redzēt visi lietotāji ar datu ņēmēja lomu (API Devportal);

o Restricted by role(s) – servisu abonēšanas portālā varēs redzēt lietotāji ar speciāli izveidotu lomu

(API Devportal);

• Tags – tagi un atzīmes atvieglotai API meklēšanai un atlasei no saraksta;

• API Categories – API piederības definēšana konkrētai kategorijai, jāizvēlas iestāde, kuras pārziņā ir šis API;

• GitHub URL – saite uz API GitHub portālā;

• Slack URL – saite uz API Slack;

• Make this the default version –

13

o YES – Servisa versija (ja ir vairākas) ar šo iezīmi tiks uzskatīta par primāro un pie vairākām servisa

iterācijām var tikt izsaukta bez versijas apzīmējuma;

o NO – Servisa izsaukumā vienmēr būs jānorāda versiju.

1.3.2 Business info sadaļa

Sadaļa ir radīta, lai servisa īpašnieks vai publicētājs varētu noradīt kontaktinformāciju. Visi sadaļā esošie

lauki ir obligāti aizpildāmi.

• Business Owner – servisa īpašnieks;

• Business Owner Email – servisa īpašnieka e-pasts;

• Technical Owner – servisa uzturētājs;

• Technical Owner Email – servisa uzturētāja e-pasts.

14

1.3.3 Documents sadaļa

Sadaļā radīta, lai publicētāji vai servisa uzturētāji varētu pievienot saistīto dokumentāciju, piemērus, SDK

vai citu lietotājiem noderīgu informāciju. Turpmāk tā būs pieejama lejupielādei Izstrādātāju portāla.

Izvēloties apakšsadaļu Runtime pie API Configurations sadaļas, iespējams konfigurēt norādītā galapunkta

atgrieztās kļūdas aiztures un noildzes gadījumā. Iespējams izvēlēties vairākus kļūdu kodus.

1. Endpoint Suspend State – “aizturēts” galapunkts nesaņem pieprasījumus un neatgriež atbildes.

a. Initial Duration – norāda, pēc cik ilga laika tiek sūtīts atkārtots ziņojums. Pēc noklusējama

pēc 30 sekundēm;

b. Max Duration – norāda milisekundēs, cik ilgi galapunkts tiks aizturēts;

2. Error Codes – Jānorāda, kādas saņemtās kļūdas gadījumā, galapunkts tiks aizturēts. Iespējams

norādīt vairākus atgrieztos kļūdas kodus;

3. Connection Timeout - norāda atbildes darbības gadījumā, kad tiek saņemta savienojuma noilgums:

1.4 CORS konfigurācija

CORS (Cross-Origin Resource Sharing) ir mehānisms, kas ļauj piekļūt aizsargātiem resursiem no ārēja

domēna (kas nav resursu domēns). CORS ir iespējams norādīt globāli visiem publicētajiem API. Parametra

definēšanas pieejama sadaļā Runtime.

15

CORS apraksts un noderīgas saites

Enabling CORS for APIs

1.5 Sadaļa “Deploy”
Pēc visu Develop soļu izpildes un aprakstu pievienošanas Portal Configurations apakšsadaļās, kļūst

iespējams veikt servisa izmitināšanu. Lai iniciētu šo procesu, publicētājam ir nepieciešams pāriet uz

Overview sadaļu un servisa saskarnē izvēlēties punktu Deploy.

Turpmāk izvērsies Deploy sadaļas izvēlne, kur ir sekojoši lauki:

1. API publicēšanas vide, parasti paliek bez izmaiņām;
2. API galapunkta apraksts konkrētai servisa revīzijai;
3. Veikt izmitināšanu.

https://apim.docs.wso2.com/en/latest/design/advanced-topics/enabling-cors-for-apis/

16

Pēc servisa izmitināšanas, kļūst pieejami revīzijai piesķirtie atribūti, kuri satur vārtejas saiti, publicētas

servisa revīzijas statusu un vārtejas saites redzamības konfigurēšanas izvēlni.

Pēc soļu izpildes nepieciešams pāriet uz Overview sadaļu. Produkcijas vidē, nospiežot 'Publish', VDAA tiks

nosūtīts servisa publicēšanas pieprasījums, un tiks pārbaudīta servisa atbilstība vadlīnijām. Kamēr servisa

publicēšanas pieprasījums nebūs apstiprināts, būs redzams statuss “The request is pending” (skatīt zemāk

attēlā):

Lai serviss varētu tikt apstiptināts publicēšanai, tam jābūt izpildītiem šādiem kritērijiem:

• Servisa nosaukums atbilst notācijai: API/ISS-{Autoritātes identifikators no iestāžu un struktūrvienību
klasifikatora (Authority)}-{datu ņēmēja servisa nosaukums bez speciālajiem simboliem }-{versija notācijā
– “v{Major}_{Minor}”, piemēram, “v1_0”; } ;
• Servisa versijas numurs atbilst notācijai – “v{Major}_{Minor}”, piemēram, “v1_0” ;
• Servisam ir izveidots un aktualizēts TAG saraksts, kas minimāli satur - Iestādes nosaukumu, iestādes
nosaukuma saīsinājumu, servisa nosaukumu, servisa tipu ;
• Servisam ir pievienots apraksts pie “Edit description” ;
• Servisam ir ievadīta informācija par biznesa un tehnisko īpašnieku ;

Līdz servisa apstiprināšanai ir iespējams atcelt nosūtīto publicēšanas pieprasījumu un veikt izmaiņas servisa

aprakstā. Lai to varētu izdarīt, sadaļā “Lifecycle” pie aktuālā publicēšanas pieprasījuma jānospiež poga

“Delete task” (skatīt zemāk attēlā):

17

Ja serviss atbildīs visām vadlīnijām un tiks apstiprināts publicēšanai, tas automātiski tiks publicēts un to būs

iespējams apskatīt API Izstrādātāju portālā. Par servisa publicēšanas apstiprinājumu un publicēšanu,

lietotājam tiks nosūtīts informatīvs e-pasts.

Gadījumā, ja servisa publicēšana tiks noraidīta, serviss tiks atgriezts Created stāvoklī un servisa

publicēšanas pieprasījuma veicējs saņemts e-pastu ar ziņu, ka publicēšanas pieprasījums ir noraidīts ar

uzskaitītiem trūkumiem, kurus nepieciešams izlabot pirms veikt atkārotu servisa publicēšanu.

Testa vidē, pēc pogas ‘Publish’ nospiešanas, serviss automātiski tiks publicēts un būs pieejams izmantošanai

API Izstrādātāju portālā.

1.6 Uzticamo pušu pārvaldība

Atļauju piešķiršanas kārtība

Ja serviss ir aizsargāts ar atļauju (scope), tad to ir nepieciešams pievienot izveidotajam klienta lietojumam

jeb aplikācijai, izmantojot https://visstv.vraa.gov.lv/ (testa vidē) vai https://viss.gov.lv/ (produkcijas vidē)

portāla PFAS uzticamo pušu pārvaldības sadaļas. Tās atrodamas pēc autorizācijas portālā, nospiežot uz sava

vārda, uzvārda, un ir pieejamas tikai lietotājiem ar attiecīgo PFAS lomu. Piekļuves PFAS Uzticamo pušu

sadaļai tiek izveidotas reizē ar API Pārvaldnieka “Publisher” portāla lietotāju. Papildus tās ir iespējams iegūt

aizpildot veidlapu un norādot lomu PfasRelyingParty_Authority_Administrator.

https://visstv.vraa.gov.lv/
https://viss.gov.lv/
https://viss.gov.lv/-/media/Files/VRAA/Dokumentacija/Vadlinijas/E_pakalpojumi/Administrativie_dokumenti/Veidlapa_Izstradatajiem_2022.ashx

18

Nākošajā solī jāatrod API Izstrādātāju (Devportal) portālā izveidoto klienta lietojumu, ar kuru tika

abonēts konkrēts serviss. To var atrast divos veidos: 1)Nosaukumā ievadot izveidotā klienta lietojuma

nosaukumu. 2) Identifikatora laukā ievadot klienta lietojuma Consumer Key (Tā iegūšana aprakstīta 3.1.

nodaļā). Piešķirt atļaujas Datu ņēmēju aplikācijām var tikai konkrēta servisa īpašnieks (Datu devējs) ar

attiecīgo PFAS lomu.

Atverot atrasto, izveidoto klienta lietojumu, sadaļā Atļaujas jāpievieno nepieciešamā atļauja (scope)

Piemērs ar atļaujas pievienošanu

Nepieciešamās atļaujas iespējams atrast lejupielādējot swagger(.JSON) datni izvēlētajam API.

Atļaujas ir saistītas ar konkrētām metodēm. Viena SOAP servisa ietvaros var būt tikai viena atļauja visām

metodēm. REST un GraphQL servisu gadījumā katrai atsevišķai servisa metodei var būt sava atļauja, tāpēc

Datu devējiem ir iespēja sīkāk un precīzāk pārvaldīt piekļuves iespējas pie saviem servisiem.

19

Apzinoties nepieciešamās metodes, klients, jeb Datu ņēmējs Json failā jāmeklē "scopes", un izvēlas

nepieciešamās, kuras atbilst izmantošanai paredzētajām metodēm. Pēc tam klients vienojas ar Datu devēju

par atļaujas pievienošanu savai aplikācijai PFAS uzticamo pušu pārvaldības sadaļā. Pievienošanu

nodrošina Datu devējs.

20

2. API Izstrādātāju portāls

Lai piekļūtu servisu abonēšanas funkcionalitātei ir jāautentificējas ar sev piešķirto lietotāju Izstrādātāju

portālā (API Devportal):

- Testa vide: https://apitest.vraa.gov.lv/devportal

- Produkcijas vide: https://api.viss.gov.lv/devportal

Portāls ir pieejams servisu apskatīšanai arī neautentificētiem lietotājiem.

API Izstrādātāju portāls lietotājam attēlosies tādā valodā, kāda būs izvēlēta lapas galvenē

2.1. Klienta lietojuma izveide

Pirmais solis, pirms varētu sākt abonēt servisus Izstrādātāju portālā, ir Klienta lietojuma, jeb

aplikācijas izveide. Klienta lietojumu izveides sadaļa ir atrodama lapas galvenē, izvēloties Klienta lietojumi.

Klienta lietojums ir loģiskais vairāku API apvienojums. Klienta lietojums pieļauj viena piekļuves talona

izmantošanu, vairāku dažādu API servisu izsaukumu veikšanai. Talons tiek pieprasīts vienas konkrētas

aplikācijas ietvaros, servisus ārpus aplikācijas ar šo konkrēto talonu nevarēs izsaukt. Pēc noklusējuma

izveidots Klienta lietojums DefaultApplication nav pieļauts izmantošanai, jo veidotajām aplikācijām jāatbilst

Datu apmaiņas izveides vadlīniju dokumentā aprakstītai sintaksei (5.3.1.3 Klienta lietojuma reģistrācija)

(Skatīt 2.4. sadaļu šajā dokumentā).

1. Lai pievienotu jaunu Klienta lietojumu, sadaļā Klienta lietojumi ir jāizvēlas Pievienot jaunu

klienta lietojumu.

2. Nākošajā solī Klienta lietojuma nosaukums jāveido vadoties pēc Klienta lietojuma

nosaukuma formāta notācijas: “APP-{Autoritātes identifikators (visscore:authorityIdent) no

iestāžu un struktūrvienību klasifikatora (Authority), izmanto apakš svītru “_” punktu vietā, un

divas apakš svītras “__” vienas apakš svītras vietā, piemēram, “SIA_Iestade1”}-{datu ņēmēja

klienta lietojuma nosaukums bez speciālajiem simboliem, kurā konkrētais serviss (API) tiks

izmantots, piemēram, “TapisUI” u.tml.) Piemērs: “APP-SIA_Iestade1-TapisUI”.

https://apitest.vraa.gov.lv/devportal/
https://api.viss.gov.lv/devportal/

21

Obligāti aizpildāmie lauki ir atzīmēti ar bold

• Application Name – aplikācijas nosaukums ar atbilstošu sintaksi;

• Shared Quota for Application Tokens – aplikācijas izsaukumu ierobežojums;

• Application Description – aplikācijas apraksts.

Klienta lietojuma īpašnieka maiņa

Gadījumā, ja nepieciešams veikt klienta lietojuma īpašnieka maiņu jeb aplikācijas pārvietošanu no viena

API Pārvaldnieka lietotāja profila uz citu starp vienas un tās pašas iestādes darbiniekiem, nepieciešams

nosūtīt maiņas pieprasījumu uz atbalsts@vdaa.gov.lv

• Pieprasījumā jānorāda šāda informācija:

• Klienta lietojuma nosaukums un identifikators (ClientId)

• Esošā īpašnieka API Pārvaldnieka lietotājvārds

• Jaunā īpašnieka API Pārvaldnieka lietotājvārds

• Iestāde, kuras ietvaros tiks veikta aplikācijas īpašnieka maiņa

2.2. Klienta lietojuma atslēgu ģenerēšana

Lai ar izveidoto klienta lietojumu varētu veikt servisa izsaukumus, nepieciešams ģenerēt klienta

lietojuma identifikatoru un atslēgu (Client ID un ClientSecret). Atslēgu ģenerēšana jāveic izvēloties

nepieciešamo aplikāciju, apakšsadaļā Oauth2 Taloni nospiežot “Generate keys”.

mailto:atbalsts@vdaa.gov.lv

22

Ja klienta lietojuma nosaukums ir izveidots atbilstoši vadlīnijām, tiks uzģenerēts un parādīts Consumer Key

un Consumer Secret, kas ir vienādi, savukārt gadījumā, ja tiek attēlota kļūda par atslēgu ģenerēšanu – ir

jāveic izveidotās aplikācijas nosaukuma precizēšana. (Skatīt 2.1. sadaļu)

!Svarīgi: Piekļuves talona (access_token) iegūšanai neizmantot piedāvāto iespēju CURL To Generate

Access Token/CURL Piekļuves Talona Ģenerēšana. Tā vietā skatīt nodaļu 3.“Servisu testēšana izmantojot

Postman”, par piekļuves talona iegūšanu izmantojot sertifikāta autentifikāciju.

2.3. API abonēšana un izmantošana

Pēc sekmīgas klienta lietojuma izveides ir iespējams izvēlēties un abonēt nepieciešamos servisus no

API kataloga. Nepieciešamo servisu iespējams meklēt vai nu kopējā API katalogā, vai arī izmantojot

meklētāja funkcionalitāti.

Izvēloties vajadzīgo servisu, servisa lapā jāizvēlas Abonementi apakšsadaļu (1), kur pierakstoties ir jānorāda

attiecīgo Klienta lietojumu (2), kura ietvaros ir nepieciešams izmantot izvēlēto API, jāizvēlas vienu no

pieejamiem pieprasījumu limitēšanas veidiem (3) un jānospiež poga Abonēt, lai veiktu servisa abonēšanu

(4).

23

Savus abonētos API servisus iespējams redzēt Klienta lietojumi sadaļas Abonementi apakšsadaļā. Ja serviss

ir pieejams šajā sadaļā, tas nozīmē, ka servisa abonēšana noritēja veiksmīgi.

Turpmāka servisu izmantošanas un izsaukšanas procedūra no tehniskā skatupunkta ir aprakstīta Datu

apmaiņas izveides vadlīniju dokumentā

Try Out/Izmēģināt sadaļa

API sadaļā Izmēģināt/Try Out iespējams apskatīt konkrētajam servisam pieejamās metodes un

izsaukuma piemērus:

Lūdzam ņemt vērā, ka šajā sadaļā nav iespējams testēt servisu darbību un veikt servisa izsaukumus.

Informāciju par servisu testēšanu skatīt nodaļā 3. “Servisu testēšana izmantojot Postman”.

Tiesību pieprasīšana no Datu devējiem

https://www.vdaa.gov.lv/lv/media/9326/download?attachment
https://www.vdaa.gov.lv/lv/media/9326/download?attachment

24

Lai iegūtu piekļuves tiesības uz sevis izvēlētu servisu, nepieciešams sazināties ar tā īpašnieku.

Kontaktinformācija atrodama pie izvēlētā API, sadaļā Business Info. Ja lietotājam jau ir izveidots API

Pārvaldnieka lietotājs, tad tiesību iegūšanai izmantot servisu, VDAA iesaiste vairs nav nepieciešama.

Pieprasot atļauju datu devējam jānorāda:

• Servisa nosaukums, kuru vēlas izmantot

• Izveidotā Klientu lietojuma (Aplikācijas) nosaukumu, ar kuru abonēts serviss un tā Consumer Key.

• Atļaujas (scope), kuras vēlēsies izmantot

Pēc atļaujas saņemšanas iespējams sākt izmantot šos servisus/metodes

25

3. Servisu testēšana izmantojot Postman
Produkcijas un testa vidē, talonu izgūšana notiek tikai izmantojot sertifikāta autentifikāciju!

3.1. Piekļuves talona (access_token) iegūšana izmantojot sertifikātu

Nepieciešamais piekļuves talona iegūšanai:

a) IAM Sertifikāts (Iegūšana aprakstīta - https://www.vdaa.gov.lv/lv/api-parvaldnieks#sertifikata-

pieprasijums

!!! Iegūto sertifikātu sūtīt uz e-pasta adresi - atbalsts@vdaa.gov.lv, kā arī pieminēt priekš

kuras vides sertifikāts vajadzīgs - testa vai produkcijas.

b) Aplikācija API Pārvaldniekā

c) KeyStore Explorer vai līdzvērtīgs rīks

d) Postman v9.5.0 vai jaunāks

Soļi:

1. Postman rīkā jāimportē kolekcija “IAM token un transaction piemērs testa vide”

(https://api.postman.com/collections/42112055-ad486c56-7537-4de7-aec5-
8e36cd916722?access_key=PMAT-01KH10ZTYRS6QN092Z9Z8H8YC7)

2. Kolekcija satur vairākus pieprasījumus. Šajā gadījumā nepieciešams atvērt IAM Get Token.

3. Pre-request Script sadaļā jāveic 3 parametru konfigurāciju:

• var clientId – Klienta lietojuma identifikators (Consumer Key) (Iegūšana aprakstīta 2.2.

nodaļā)

• var privateKey – Privātā RSA atslēga, to iespējams iegūt ar KeyStore Explorer konvertējot

izdoto PFX sertifikātu *.key formātā (Iegūšana aprakstīta 3.1. nodaļas 4. solī)

https://www.vdaa.gov.lv/lv/api-parvaldnieks#sertifikata-pieprasijums
https://www.vdaa.gov.lv/lv/api-parvaldnieks#sertifikata-pieprasijums
mailto:atbalsts@vdaa.gov.lv
https://api.postman.com/collections/42112055-ad486c56-7537-4de7-aec5-8e36cd916722?access_key=PMAT-01KH10ZTYRS6QN092Z9Z8H8YC7
https://api.postman.com/collections/42112055-ad486c56-7537-4de7-aec5-8e36cd916722?access_key=PMAT-01KH10ZTYRS6QN092Z9Z8H8YC7

26

• var publicKey – Publiskā atslēga, iegūst izmantojot KeyStore Explorer no izdotā PFX

sertifikāta (Iegūšana aprakstīta 3.1. nodaļas 5. solī)

4. Privātās atslēgas iegūšana:

a)KeyStore Explorer rīkā jānospiež File -> Open -> Jāizvēlas sertifkāts PFX formātā

b)Jānospiež uz sertifikāta un jāizvēlas Export -> Export Private Key

c)Jāizvēlas OpenSSL

d)Jāsaglabā ar tādiem parametriem, kā parādīts attēlā

27

e) Ģenerēto *.key failu jāatver ar teksta redaktoru un jānokopē uzģenerēto RSA PRIVATE

KEY

f) Iegūtā atslēga ir var privateKey parametrs, kurš jāiekopē Postman rīkā (3. solis šajā

instrukcijā par piekļuves talona iegūšanu)

5. Publiskās atslēgas iegūšana

 a) KeyStore Explorer rīkā divas reizes jānospiež uz sertifikāta, tad atvērsies logs, kurā

jāizvēlas PEM

 b)Sertifikāts atvērsies jaunā logā, kur tas redzams daļā starp

 ---BEGIN CERTIFICATE--- un ---END CERTIFICATE---, kā parādīts attēlā

c)Iegūtā vērtība ir var publicKey parametrs, kurš jāiekopē Postman rīkā (3. solis šajā

instrukcijā par piekļuves talona iegūšanu)

 6. Pēc visu atribūtu aizpildes Pre-request Script sadaļā jāpalaiž Side Load JSRSASing un IAM Get

Token. Rezltātā tiks saņemts JWT tipa piekļuves talons (access_token).

Ja paredzēts izsaukt servisu, kura metodes ir aizsargātas ar atļauju (scope), tad iegūstot piekļuves

talonu, to nav nepieciešams norādīt "IAM Get Token" pieprasījuma Body sadaļā, jo visas API

Pārvalndieka scopes (atļaujas) tiek automātiski iekļautas talona saturā zem sadaļas “scp”

28

Un atbilde saturēs piekļuves talonu ar IAM atļaujām, kas nav saistītas ar API Pārvaldnieka API servisu

atļaujām.

Talona pilno saturu un API Pārvalndieka scopes (atļaujas) iespējams apskatīties JWT decoderī -

https://www.jwt.io/ vai arī izmantojot publiskās IAM atslēgas (talona validācijai) - caur OpenID

Connect konfigurācijas endpointu: https://viss-portal-test.vraa.gov.lv/IamIdentity.Server/.well-

known/openid-configuration/jwks

https://www.jwt.io/
https://viss-portal-test.vraa.gov.lv/IamIdentity.Server/.well-known/openid-configuration/jwks
https://viss-portal-test.vraa.gov.lv/IamIdentity.Server/.well-known/openid-configuration/jwks

29

3.2. Transakcijas izveidošana servisa izsaukšanai

 Izsaukuma metode – POST

 Izsaukuma saite (Testa vidē) - https://vissapi-
test.vraa.gov.lv/ApiManagement.TransactionApi/transactions

Izsaukuma saite (Produkcijas vidē) -
https://vissapi.viss.gov.lv/ApiManagement.TransactionApi/transactions

Header sadaļā jānorāda šādi parametri:

!Svarīgi: Ja transakcijas iegūšanai tiek izmantots Datu apmaiņas numurs, izsaukumā nepieciešams

norādīt arī iepriekš iegūto piekļuves talonu

Body sadaļā jāizvēlas raw formāts un JSON, un jāievada:

{

 "eServiceId": "URN:IVIS:100001:EP-EP889-v1-0"

}

Testa vidē testējot servisus šis numurs varbūt jebkāds, ja vien tas ir reģistrēts numuru katalogā. Datu

apmaiņas nodrošināšanai šo numuru piešķir VDAA. Produkcijas vidē ir atļauts izmantot tikai

iestādei izdoto numuru!

Saņemtā atbildē būs ģenerēta transakcijas numura vērtība, kura būs nepieciešams nākamajos soļos.

4. Servisa izsaukšana
Izsaukuma metode – POST

Izsaukuma saitē jānorada ISS, API vai GQL Endpoints no API Pārvaldnieka.

https://vissapi-test.vraa.gov.lv/ApiManagement.TransactionApi/transactions
https://vissapi-test.vraa.gov.lv/ApiManagement.TransactionApi/transactions

30

Aiz pamata endpoint daļas jānorāda izvēlētas metodes endpoint. Tās iespējams apskatīt API

Pārvaldnieka portālā pie abonētā API, sadaļā Try Out, piemēru skatīt bildē.

Norādāmie parametri Header sadaļā ir atkarīgi no paša servisa. Obligātie ir noradīti zemāk:

x-transactionId - Iepriekš saņemtais transakcijas numurs

Authorization – Bearer + iepriekš saņemtais piekļuves talons (access token)

Content-Type un Accept - atkarīgs no katra servisa specifikas

Body sadaļa formējas atbilstoši servisa aprakstam. Konkrētajā piemērā parādīts raw + JSON Body

datu tips. Atkarībā no servisa uzbūves tipi mēdz mainīties un tad jānorāda atbilstošs tips un formāts,

kādā tiks veikts izsaukums. Ja izvēlētais serviss ir SOAP serviss, tad formāts vienmēr būs XML un

metode POST, REST servisa gadījumā būs JSON vai kāds cits no rīkā piedāvātiem tipiem.

Piemērā tas ir JSON.

31

1. Pielikums

2. openapi: 3.0.1

3. info:

4. title: API-RAPLM_VRAA-EmptyExample

5. version: v1_0

6. servers:

7. - url: /

8. security:

9. - default: []

10. paths:

11. /getExample:

12. get:

13. summary: 'Vispārīga informācija '

14. description: Metodes apraksts

15. parameters: []

16. responses:

17. '200':

18. description: ok

19. security:

20. - default:

21. - API-RAPLM_VRAA-EpmtyExample-v1_0-ScopeName

22. x-auth-type: Application & Application User

23. x-throttling-tier: Unlimited

24. x-wso2-application-security:

25. security-types:

26. - oauth2

27. optional: false

28. components:

29. securitySchemes:

30. default:

31. type: oauth2

32. flows:

33. implicit:

34. authorizationUrl: 'https://test.com'

35. scopes:

32

36. API-RAPLM_VRAA-EpmtyExample-v1_0-ScopeName: Scope to provide an example for users

37. x-scopes-bindings:

38. API-RAPLM_VRAA-EpmtyExample-v1_0-ScopeName: ''

39. x-wso2-auth-header: Authorization

40. x-wso2-cors:

41. corsConfigurationEnabled: false

42. accessControlAllowOrigins:

43. - '*'

44. accessControlAllowCredentials: false

45. accessControlAllowHeaders:

46. - authorization

47. - Access-Control-Allow-Origin

48. - Content-Type

49. - SOAPAction

50. - apikey

51. - Internal-Key

52. accessControlAllowMethods:

53. - GET

54. - PUT

55. - POST

56. - DELETE

57. - PATCH

58. - OPTIONS

59. x-wso2-production-endpoints:

60. urls:

61. - 'http://swagger.io'

62. type: http

63. x-wso2-basePath: /example/v1_0

64. x-wso2-transports:

65. - http

66. - https

67. x-wso2-response-cache:

68. enabled: false

69. cacheTimeoutInSeconds: 300

70.

5. Kļūdas API Pārvaldniekā
Šajā dokumentā aprakstītas Iespējamās kļūdas API Pārvaldniekā, to novēršana, un sagatavotas atbildes uz

kļūdu pieteikumiem API Pārvaldnieka lietotājiem.

Kļūdas API Pārvaldnieka servisu izsaukumos

Kļūdas kods: 405 Method Not Allowed

Kļūdas paziņojums: “Method not allowed for given API resource”

Kļūdas cēlonis/novēršana: API izsaukums tiek veikts ar metodes tipu, kura nav reģistrēta šim API

(GET/POST/PUT/utt.). Jāpārliecinās, kādu metodi norāda izsaukumā un kādas ir reģistrētas API

Pārvaldniekā.

33

Kļūdas kods: 400 Bad Request

Kļūdas paziņojums: Obligātais header attribūts x-transactionId nav norādīts.

Kļūdas cēlonis/novēršana: API Servisa izsaukumā Header daļā jānorāda iepriekš izgūtais transakcijas

numurs parametrā x-transactionId

Kļūdas kods: 403 Forbidden

Kļūdas paziņojums: "Access failure for API: nosaukums, version: v1_0 status:- Resource forbidden "

Kļūdas cēlonis/novēršana: Serviss, kuru vēlas izsaukt nav abonēts API Pārvaldnieka izstrādātāju (Developer)

portālā. Nepieciešams Devportālā to abonēt (subscribe).

Ja it kā ir abonēts, tad jāsalīdzina, vai talona izgūšanā tiešām norāda tās pašas aplikācijas ClientId un Secret.

Kļūdas kods: 403 Forbidden

Kļūdas paziņojums: "The access token does not allow you to access the requested resource",

Kļūdas cēlonis/novēršana: Drošības talons, ar kuru veic servisa izsaukumu nesatur vajadzīgo atļauju

(scope). Vai nu PFAS sadaļa pie klienta lietojuma nav pievienota aplikācija, vai arī izgūstot talonu nenorāda

Body daļā šo vajadzīgo scope

Kļūdas kods: 401 Unauthorized

Kļūdas paziņojums: “Invalid Credentials. Make sure you have provided the correct security credentials"

Kļūdas cēlonis/novēršana: Tiek lietots nederīgs/nepareizs drošības talons. Jāpārliecinās vai nemēģina

servisu testa vidē izsaukt ar produkcijas vides talonu, vai otrādāk.

Kļūdas kods: 500 Internal Error

Kļūdas paziņojums: "Unclassified Authentication Failure"

Kļūdas cēlonis/novēršana: Izsaukumā tiek lietots drošības talons, kuram ir beidzies termiņš, nepieciešams

izgūt jaunu talonu un tad veikt izsaukumu.

Kļūdas kods: 404 Not Found

Kļūdas paziņojums: “Runtime error” “No matching resource found for given API Request"

Kļūdas cēlonis/novēršana: Kļūdaini norādīts izsaukuma URL, var būt, ka nepareizi norādīta konkrēta

metode, kuru vēlas izmantot. Jāpārbauda kā izsaukumā norādīts Context+metode.

Ja URL + metode norādīta korekti, tad, iespējams, kļūda pašā API Pārvalndiekā. Jāpārbauda statuss pie

endpoint.

Kļūdas kods: 500 Internal Error

Kļūdas paziņojums: " com.netflix.zuul.exception.ZuulException"

Kļūdas cēlonis/novēršana: Kļūda veicot servisu izsaukumus. Kļūda servisa īpašnieka pusē, jāgaida kamēr

viņi atrisina

34

5.1. Kļūdas TransactionApi izsaukumā

Kļūdas kods: 403 Forbidden

Kļūdas paziņojums: "Nepietiekamas tiesības"

Kļūdas cēlonis/novēršana: Kļūda tiek saņemta gadījumā, ja mēģina izgūt Transakciju izmantojot DA

numuru. Izsaukumā nepieciešams papildus padod Bearer drošības talonu. Ja tas tiek jau darīts, jāpārliecinās,

vai sertifikāts un DA numurs reģistrēti zem vienas un tās pašas iestādes. Transakciju ar DA numuru iespējams

uzsākt tikai ar sertifikāta autentifikāciju.

Kļūdas kods: 400 Bad Request

Kļūdas paziņojums: "Identifikators nav reģistrēts katalogā"

Kļūdas cēlonis/novēršana: Kļūda tiek saņemta gadījumā, ja izgūstot transakciju tiek lietots neeksistējošs vai

kļūdains EP vai DA numurs. Jāpārbauda vai tiek lietots testa/produkcijas videi atbilstošs numurs, un vai šāds

URN ir reģistrēts Sitecore.

Kļūdas kods: 400 Bad Request

Kļūdas paziņojums: "Neatbilstošs URN formāts"

Kļūdas cēlonis/novēršana: Kļūda tiek saņemta gadījumā, ja transakcijas izsaukumā eServiceId ir norādīts

neatbilstoši vajadzīgajam formātam. Nepieciešams lietot:

EP gadījumā – “URN:IVIS:100001:EP-EPXX-V1-0"

DA gadījumā - "URN:IVIS:100001:EP.DA-DAXXX-V1-0"

5.2. Kļūdas drošības talona (access_token) izsaukumā

Kļūdas kods: 401 Unauthorized

Kļūdas paziņojums:

"error": "invalid_client",

"error_description": "urn:oauth2:{kļūdains ClientId}"

35

Kļūdas cēlonis/novēršana: Drošības talona /token izsaukumā kļūdaini norādīts ClientId un/vai ClientSecret.

Iespējams, ka tiek izmantoti testa vides ClientId un ClientSecret produkcijas vides drošības talonu izgūšanas

adresei vai otrādi. ClientId jānorāda be “urn:oauth2:”

Kļūdas kods: 400 Bad Request

Kļūdas paziņojums: “The user ‘{PFAS lietotājvārds}’ failed validation using the PFAS”

Kļūdas cēlonis/novēršana: Kļūdaini norādīts PFAS lietotājvārds un/vai parole vai arī beidzies lomas termiņš.

Iespējams, ka ārējie lietotāji norāda API Pārvaldnieka lietotājvārdu/paroli, ja tā, tad jāinformē, ka jāizmanto

sertifikāta autentifikācija.

Kļūdas kods: 400 Bad Request

Kļūdas paziņojums: "The input is not a valid Base-64 string as it contains a non-base 64 character, more than

two padding characters, or an illegal character among the padding characters. "

Kļūdas cēlonis/novēršana: Veicot drošības talona izgūšanu ar sertifikātu, publiskā daļa tiek norādīta ar "----

-BEGIN CERTIFICATE-----\ un -----END CERTIFICATE-----". Pie publiskās atslēgas nepieciešams

norādīt tikai pašu teksta virkni, bet pie privātās nepieciešams saglabāt arī -----BEGIN/END RSA PRIVATE

KEY-----.

Kļūdas kods: -

Kļūdas paziņojums: “There was an error in evaluating the Pre-request Script:undefined: undefined”

Kļūdas cēlonis/novēršana: Kļūdaini aizpildīta Pre-request script sadaļa. Iespējams, ka nav norādīts -----

BEGIN/END RSA PRIVATE KEY----- pie privateKey vērtības. Ja tas ir, tad jāpārbauda visa sintakse, vai

nav kāda drukas kļūda.

Kļūdas kods: 400 Bad Request

Kļūdas paziņojums: "IDX10214: Audience validation failed. Audiences:

'https://ha.viss.gov.lv/STS/Viss.Pfas.STS/oauth2/token'. Did not match:

validationParameters.ValidAudience….:”

Kļūdas cēlonis/novēršana: Veicot izsaukumu ar Postman nesakrīt URL adrese ar to, kura norādīta “var

audience”. Vai arī https://ha.vraa.gov.lv/STS/VISS.Pfas.STS/oauth2/token vietā tiek izmantots

https://ha.vraa.gov.lv/STS/Viss.Pfas.STS/oauth2/token

Kļūdas kods: 400 Bad Request

Kļūdas paziņojums: “Unknown_error”; "ID4058"

Kļūdas cēlonis/novēršana: Sertifikāts, kurš tiek izmantots izsaukumā ir vai nu deaktivizēts/ nav aktīvs vai

arī tam beidzies termiņš. Otrs variants, ka tiek lietots produkcijas vides sertifikāts testa vides talona iegūšanai

vai arī otrādāk.

5.3. Kļūdas API Pārvaldnieka portālos

Kļūdas paziņojums: “Error! You have partially-created keys. Please click `Clean Up` button and try again.”

“Error occurred when generating application keys, General Error”

“Kļūda! Jūs esat daļēji izveidojis atslēgas. Lūdzu, noklikšķiniet uz pogas 'Notīrīt' un mēģiniet vēlreiz. Atslēgu

ģenerēšanas kļūda. Aplikācijas nosaukums neatbilst sintaksei. Skatīt dokumentāciju.” “Ģenerējot Klienta

lietojuma atslēgas, radās kļūda, General Error”.

https://ha.vraa.gov.lv/STS/VISS.Pfas.STS/oauth2/token
https://ha.vraa.gov.lv/STS/Viss.Pfas.STS/oauth2/token

36

Kļūdas cēlonis/novēršana: Klienta lietojuma aplikācijas nosaukums nav izveidots atbilstoši vadlīnijās

noteiktajam formātam. Nepieciešams rediģēt aplikācijas nosaukumu, lai tas atbilstu šādas formātam: APP-

{Iestādes_identifikators}-{Aplikācijas_nosaukums}

