	Publiskās pārvaldes dokumentu pārvaldības sistēmu integrācijas vides izveide
	Versija 0.2.0

	Sistēmas konceptuālā arhitektūra (Dokumentu integrācijas vide)
	Datums: 28.04.2011

	Publiskās pārvaldes dokumentu pārvaldības sistēmu integrācijas vides izveide
	Versija 1.4.1

	Bibliotēkas integrācijas instrukcija
	Datums: 27.06.2025

Publiskās pārvaldes dokumentu pārvaldības sistēmu integrācijas vides izveide
Bibliotēkas integrācijas instrukcija
V. 1.4.1
VDAA.DIV.INS.BIB.Bibliotēkas_integrācijas_instrukcija.1.4.1.2025.06.27
			
	[image: C:\Users\ritvars.prikulis.RIXTECH\AppData\Local\Microsoft\Windows\INetCache\Content.Outlook\34796NCP\Rix_technologies_2017.png]
	
[image: image, 215x206px, 22.16 KB]

Rīga, 2025

	[image:]
	 IEGULDĪJUMS TAVĀ NĀKOTNĒ
	[image:]

DOKUMENTS IR IEROBEŽOTAS PIEEJAMĪBAS INFORMĀCIJA
Dokumenta autortiesības
Šo dokumentu Valsts digitālās attīstības aģentūras (VDAA) uzdevumā ir izstrādājis A/S "RIX Technologies" projekta „Publiskās pārvaldes dokumentu pārvaldības sistēmu integrācijas vides izveide” ietvaros. Dokuments ir izmantojams saskaņā ar 2011. gada 22. marta iepirkuma līguma ID Nr. VRAA/2010/18/ERAF/SK „Par publiskās pārvaldes dokumentu pārvaldības sistēmu integrācijas vides programmatūras izstrādi un ieviešanu” nosacījumiem un saskaņā ar 2015.gada 15.jūnija Vispārīgo vienošanos Nr. “13-7/15/33”.

Kontaktpersonas
R. Prikulis
A/S "RIX Technologies"
Projektu vadītājs
Elizabetes iela 15-4
Rīga, LV 1010
Tālr.: +371 67142990
Fakss: +371 67142991
E-pasts: ritvars.prikulis@rixtech.lv
WWW: www.rixtech.lv

I. Griščenko
Valsts reģionālās attīstības aģentūras
Informācijas sistēmu attīstības departamenta
Integrāciju nodaļas vadītājs
Alberta iela 10, Rīga, LV 1010
Tālr.: +371 67079022,
Fakss: +371 67079001
WWW:
http://www.vdaa.gov.lv

Izmaiņu vēsture
	Datums
	Versija
	Apraksts
	Autors

	12.04.2012
	1.0.0
	Dokumenta sākuma versija.
	Gints Plivna
Ritvars Prikulis

	16.04.2012
	1.1.0
	Papildinājumi atbilstoši dokumenta iekšējai kvalitātes kontrolei.
	R. Prikulis

	02.05.2012
	1.1.1
	Papildinājumi atbilstoši CKS.
	Gints Plivna
Ritvars Prikulis

	09.05.2012
	1.1.2
	Papildinājumi atbilstoši CKS.
Pievienota informācija par TRACEINFO laukiem.
	Gints Plivna
Ritvars Prikulis

	10.09.2012
	1.2.0
	Papildināti integrācijas piemēri, pēc Pasūtītāja sadarbības partneru jautājumu (neskaidrību) apkopošanas.
	Ritvars Prikulis

	19.09.2012
	1.2.1
	Ar Java koda piemēriem papildinātas nodaļas „Ziņojuma servera apliecinājuma izgūšana” un „Ziņojumu asinhrona apstiprināšana”.
Pievienota nodaļa „Paziņojumu (notifikāciju) saņemšana, izmantojot tīmekļa pakalpi”.
	Ritvars Prikulis

	10.08.2014
	1.2.2
	Aktualizēta informācija par atbalstāmām Java versijām.
Papildināta nodaļa „Bibliotēkas konfigurācija”.
Pievienota nodaļa „Java bibliotēkas uzstādīšanas informācija”.
	Ritvars Prikulis

	05.09.2014
	1.2.3
	Pievienota informācija par JAVA kodēšanas algoritmiem.
	Ritvars Prikulis

	12.12.2016
	1.2.4
	Precizēta 2.nodaļa - .NET bibliotēka ar 12.12.2016(jauna bibliotēkas versija) nodrošina arī .NET4.0 64bit atbalstu.
	Ritvars Prikulis

	01.09.2017
	1.3.0
	Mainīta nodaļa 4.5. “Adresātu sinhronizācija”.
Pievienota nodaļa “4.6	E-adreses pārbaude”
	Gints Plivna
Ritvars Prikulis

	27.09.2017
	1.3.1
	Precizētas nodaļas:
· “E-adreses pārbaude”
· “Adresātu sākotnējā sinhronizācija”
· Adresātu aktuālo izmaiņu sinhronizācija
	Gints Plivna
Ritvars Prikulis

	30.11.2017
	1.3.2
	Papildinātas nodaļas (pievienoti JAVA piemēri):
· “E-adreses pārbaude”
· “Adresātu sākotnējā sinhronizācija”
· Adresātu aktuālo izmaiņu sinhronizācija
Papildinātas nodaļas:
· Apakšadresāciju vienību pārvaldība
· Prasības izpildes videi
	Gints Plivna
Ritvars Prikulis

	01.12.2017
	1.3.3
	Pievienota nodaļa:
· Bibliotēkas biznesa likumu paziņojumi;
· Kataloga e-adrešu aktualizēšana
	Ritvars Prikulis
Sergejs Deņisovs

	28.01.2018
	1.3.4
	Pievienota nodaļa:
· Bibliotēkas biznesa likumu paziņojumi;
· Kataloga e-adrešu aktualizēšana
	Ritvars Prikulis
Sergejs Deņisovs

	01.02.2108
	1.3.5
	Papildinātas nodaļas:
· Apakšadresāciju vienību pārvaldība (mainīts interfeiss);
· Kataloga e-adrešu aktualizēšana (JAVA piemēri)
	Ritvars Prikulis
Sergejs Deņisovs

	16.04.2019
	1.3.6
	Pievienota nodaļa:
· Masveida operāciju aktīvā pieprasījuma identifikatora izgūšana
	Ritvars Prikulis
Sergejs Deņisovs

	12.05.2019
	1.3.7
	Papildinātas nodaļas:
· .NET bibliotēkas konfigurācijas piemērs
· JAVA bibliotēkas konfigurācijas piemērs
· Bibliotēkas konfigurācijas parametru apraksts
· Masveida operāciju aktīvā pieprasījuma identifikatora izgūšana
· Sinhrona E-adreses pārbaude
	Ritvars Prikulis
Sergejs Deņisovs

	20.05.2019
	1.3.8
	Precizēta nodaļa:
· Masveida operāciju rezultātu izgūšana
	Ritvars Prikulis

	24.01.2020
	1.3.9
	Pievienota nodaļa:
· Valsts iestādes vai reģistros reģistrētas personas e-adreses deanulēšana
	Ritvars Prikulis
Sergejs Deņisovs

	22.05.2025
	1.4.0
	Papildinātas nodaļas (parametrs srsEinvoiceEaddresse):
· NET bibliotēkas konfigurācijas piemērs
· Bibliotēkas konfigurācijas parametru apraksts
	Ritvars Prikulis

	27.06.2025
	1.4.1
	Papildinātas nodaļas:
· Prasības izpildes videi (Java versijas)
· JAVA bibliotēkas konfigurācijas piemērs (parametrs srsEinvoiceEaddresse)

	Ritvars Prikulis

Saturs
1	Ievads	8
1.1	Dokumenta nolūks	8
1.2	Dokumenta struktūra	8
1.3	Saīsinājumi	8
1.4	Saistītie dokumenti	9
2	Prasības izpildes videi	10
3	Bibliotēkas konfigurācija	11
3.1	.NET bibliotēkas konfigurācijas piemērs	11
3.2	JAVA bibliotēkas konfigurācijas piemērs	12
3.2.1	Java bibliotēkas uzstādīšanas informācija	13
3.3	Bibliotēkas konfigurācijas parametru apraksts	14
4	Izmantošanas scenāriji	16
4.1	Bibliotēkas pieslēgšana izstrādes videi	16
4.2	Bibliotēkas funkcionalitātes izmantošana	16
4.3	Ziņojumu apmaiņas scenāriji	16
4.3.1	Ziņojuma nosūtīšana bez datnēm	18
4.3.2	Ziņojuma nosūtīšana ar datnēm	19
4.3.3	Atbildes ziņojuma sūtīšana par saņemtu ziņojumu	20
4.3.4	Ziņojuma sūtīšanas tehniskie parametri	20
4.3.5	Ziņojumu specifisko metadatu uzstādīšana, izmantojot XML failu	22
4.3.6	Ziņojumu specifisko metadatu uzstādīšana, izmantojot datu klases	23
4.3.7	Ziņojuma specifisko metadatu izgūšana	27
4.3.8	Paziņojumu (notifikāciju) saņemšana	28
4.3.9	Paziņojumu (notifikāciju) apstiprināšana	29
4.3.10	Paziņojumu (notifikāciju) saņemšana, izmantojot tīmekļa pakalpi	29
4.3.11	Ziņojumu saņemšana bez datnēm, izgūstot ziņojuma galveni	30
4.3.12	Ziņojumu saņemšana bez datnēm, izgūstot pēc kārtas	31
4.3.13	Ziņojumu saņemšana ar datnēm	31
4.3.14	Ziņojumu sinhrona apstiprināšana	33
4.3.15	Ziņojumu asinhrona apstiprināšana	34
4.3.16	Ziņojuma servera apliecinājuma izgūšana	35
4.3.17	Ziņojuma informācijas apstrāde	37
4.4	Apakšadresāciju vienību pārvaldība	37
4.4.1	Adresācijas vienību izgūšana	37
4.4.2	Adresācijas vienību reģistrēšana	37
4.4.3	Adresācijas vienību atjaunināšana	39
4.4.4	Adresācijas vienību dzēšana	40
4.4.5	Adresācijas vienību meklēšana	40
4.5	Adresātu sinhronizācija	41
4.5.1	Adresātu sākotnējā sinhronizācija	41
4.5.2	Adresātu aktuālo izmaiņu sinhronizācija	43
4.6	E-adreses pārbaude	46
4.6.1	Sinhrona E-adreses pārbaude	46
4.6.2	Asinhrona E-adreses pārbaude	47
4.7	E-adreses statusa izgūšana	48
4.7.1	.NET bibliotēkas koda piemērs	48
5	Kataloga e-adrešu aktualizēšana	49
5.1	Valsts iestādes izveidošana	49
5.1.1	.NET bibliotēkas koda piemērs	49
5.1.2	JAVA bibliotēkas koda piemērs	49
5.2	Reģistros reģistrētu un fizisku personu izveidošana	49
5.2.1	.NET bibliotēkas koda piemērs	49
5.2.2	JAVA bibliotēkas koda piemērs	50
5.3	Valsts iestādes vai reģistros reģistrētas personas e-adreses deanulēšana	50
5.3.1	.NET bibliotēkas koda piemērs	50
5.3.2	JAVA bibliotēkas koda piemērs	50
5.4	Masveida statusa atjaunošana	51
5.4.1	.NET bibliotēkas koda piemērs	51
5.4.2	JAVA bibliotēkas koda piemērs	51
5.5	Masveida īpašieku datu atjaunošana	51
5.5.1	.NET bibliotēkas koda piemērs	51
5.5.2	JAVA bibliotēkas koda piemērs	52
5.6	Masveida operāciju rezultātu izgūšana	52
5.6.1	.NET bibliotēkas koda piemērs	52
5.6.2	JAVA bibliotēkas koda piemērs	53
5.7	Masveida operāciju aktīvā pieprasījuma identifikatora izgūšana	53
5.7.1	.NET bibliotēkas koda piemērs	53
6	Bibliotēkas biznesa likumu paziņojumi	54

[bookmark: _Toc201923219]Ievads
[bookmark: _Toc201923220]Dokumenta nolūks
Šis dokuments ir veidots „Publiskās pārvaldes dokumentu pārvaldības sistēmu integrācijas vides” (DIV) sistēmas izveides projektēšanas fāzes ietvaros. Dokuments satur integrācijas instrukcijas citu sistēmu izstrādātājiem, sniedzot priekšstatu par sadarbības iespējam ar DIV sistēmu.
Klientu DVS un citas programmatūras integrācija ar DIV notiks izmantojot DVS integrācijas bibliotēkas (Java) vai Portāla adaptera (.NET) komponentes. Šajā dokumentā aprakstīto scenāriju piemēri izmanto Portāla adapteru un .NET vidi.
[bookmark: _Toc201923221]Dokumenta struktūra
Dokuments sastāv no ievada un 3 nodaļām:
· Prasības izpildes videi sniedz informāciju par bibliotēku darbināšanai nepieciešamu infrastruktūru un izpildes vides konfigurāciju.
· Bibliotēkas konfigurācija apraksta bibliotēku konfigurējamas vērtības un to nozīmi.
· Izmantošanas scenāriji satur informāciju par bibliotēkas pieslēgšanu izstrādes videi, ka arī tās funkcionālām iespējām.
[bookmark: _Toc201923222]Saīsinājumi
Dokumentā izmantotie saīsinājumi ir paskaidroti tabulā Definīcijas un saīsinājumi.
[bookmark: _Ref290028285][bookmark: _Ref290028300][bookmark: _Ref290028369]Tabula 1: Definīcijas un saīsinājumi
	Definīcija vai saīsinājums
	Skaidrojums

	DIV
	Dokumentu integrācijas vide.

	Projekts
	Publiskās pārvaldes dokumentu pārvaldības sistēmu integrācijas vides izveide.

	Pasūtītājs, VDAA
	Valsts digitālās attīstības aģentūra.

	Piegādātājs, RIX
	A/S "RIX Technologies".

	Sistēma
	Publiskās pārvaldes dokumentu pārvaldības sistēmu integrācijas vide.

	Klients
	Ārēja informācijas sistēma – DVS, portāls vai cita, kas pieslēdzas DIV, izmantojot universālo vienoto programmatūras saskarni

	Komponente
	Relatīvi neatkarīga programmatūras, tās dokumentācijas vai projekta dokumentācijas daļa, kura tiek projektēta vai uzturēta.

	DVS
	Dokumentu vadības sistēma.

	Ziņojums
	Datu bloks, ar ko apmainās sistēmas klientu DVS sistēmas informācijas pārsūtīšanai, izmantojot DIV piedāvātas iespējas. Sastāv no dokumenta aploksnes XML dokumenta un, opcionāli, piesaistītām datnēm.

	Dokumenta aploksne
	Ziņojuma pamata sastāvdaļa, reprezentēta XML dokumenta veidā. Satur dokumenta metadatus (vispārīgos un specifiskos), transporta metadatus un elektroniskos parakstus. Dokumenta aploksnes struktūra ir aprakstīta saistītā dokumentā [3. Sākotnējie standarti].

	.NET
	Microsoft programmatūras izstrādes un darbināšanas vide.

	Java
	Sun Microsystems (pašlaik Oracle apakšvienība) programmēšanas valoda, dokumenta kontekstā arī programmatūras platforma.

	API
	Application Program Interface – bibliotēkas vai citas programmatūras saskarne, kas definē piedāvātas funkcionālas iespējas.

	X509
	Publiskās atslēgas infrastruktūras standarts ciparsertifikātiem un to pārbaudei.

	XML
	Extensible Markup Language – tīmekļa dokumentu reprezentācijas veids.

	WSDL
	Web Services Description Language - tīmekļa pakalpju aprakstes valoda, definē tīmekļa pakalpes saskarni.

	.cacerts
	Java vides fails, kas satur sertificēšanas institūciju saknes ciparsertifikātus.

	App.config/Web.config
	.NET vides konfigurācijas faili attiecīgi izpildāmām lietotnēm un tīmekļa lietotnēm.

	.properties
	Faila paplašinājums Java konfigurācijas failiem.

[bookmark: _Toc201923223]Saistītie dokumenti
Šis dokuments ir lasāms kopā ar sekojošiem dokumentiem:
1. [bookmark: _Ref289417533]Tehniskā specifikācija. Publiskās pārvaldes dokumentu pārvaldības integrācijas vides izveide. Valsts reģionālās attīstības aģentūra, SIA “AA Projekts”, 2010.
2. Sistēmas konceptuālā arhitektūra. Publiskās pārvaldes dokumentu pārvaldības integrācijas vides izveide. Valsts reģionālās attīstības aģentūra, SIA „Rix Technologies”, 2011.
3. [bookmark: _Ref297817756]Sākotnējie standarti. Publiskās pārvaldes dokumentu pārvaldības sistēmu integrācijas vides izveide. V.2.0.2. Valsts reģionālās attīstības aģentūra, SIA „AA Projekts”, SIA „Evolution Consulting”, SIA „Rix Technologies”, 2011.
4. [bookmark: _Ref499829092]Sistēmas integrācijas instrukcija. Publiskās pārvaldes dokumentu pārvaldības sistēmu integrācijas vides izveide. Valsts reģionālās attīstības aģentūra, SIA „Rix Technologies”, 2019.

[bookmark: _Ref289089735]

[bookmark: _Toc201923224]Prasības izpildes videi
Portāla adaptera darbināšanai būs nepieciešama .NET Framework izpildes vides versijas 3.5 SP1 vai 4.
DVS integrācijas bibliotēka tiek atbalstīta:
· Java SE Runtime Environment 8 vides kontekstā (JAVA 1.8.0 – 1.8.221 (Version 8 Update 221)).
· .NET 3.5 SP1 vai .NET 4.
Komponenšu darbība tiks atbalstīta operētājsistēmās, kur ražotājs atbalsta atbilstošo izpildes vidi.
Bibliotēkas autentifikācijai izmantos X509 ciparsertifikātu. Klientu DVS programmatūrai jābūt pieejai ciparsertifikātam un tā privātai atslēgai. Ciparsertifikāta instalāciju Windows Certificate Store (.NET) vai Java Key Store (Java) veic klientu sistēmas administrators atbilstoši piegādātajām instrukcijām.
Korektai bibliotēku izpildei visiem izmantotiem ciparsertifikātiem, ieskaitot klientu autentifikācijas un DIV sistēmu ciparsertifikātus, jāvalidējas bez kļūdām. Tas nozīmē, ka būs nepieciešams nokonfigurēt visu šo ciparsertifikātu izdevēj institūcijas kā uzticamas. Šim nolūkam izdevēj institūcijas ciparsertifikātu publiskās daļas ir instalējamas Windows Trusted Root Certificate Store .NET vidē, un, atbilstoši, Java atslēgu glabātuvē (piemēram, cacerts. failā).

Biznesa kļūdu paziņojumi tiek uzturēti Sistēmas integrācijas instrukcijā [4].

[bookmark: _Toc201923225]Bibliotēkas konfigurācija
Pamata bibliotēkas konfigurācijas scenārijs paredz .NET konfigurācijas faila izmantošanu iestatījumu pārvaldībai (App.config vai Web.config faili). Java bibliotēkai ir līdzīgas iespējas, kuras balstās uz App.config faila pielietošanu.
DIV bibliotēkās, lai nodrošinātu universālu pieeju, tiek izmantota standartizēta datņu saspiešanas metodika. Uzstādot, lai tiek saspiestas visas nosūtāmās datnes, var novest pie tā, ka jau arhivēto datņu apjoms sūtīšanas laikā palielinās par aptuveni 30% (edoc, zip, docx u.c). Lai novērstu nevajadzīgas datu plūsmas, lūdzam rūpīgi iepazīties ar instrukcijas sadaļā aprakstītā konfigurēšanas iespējām un konfigurācijas datnē norādīt nepieciešamās bibliotēkas uzvedības vērtības. Rekomendējama šāda konfigurēšanas pieeja:
· Vērtību CompressByDefault uzstādīt uz False (skatīt zemāk piemēros);
· Datņu tipiem, kurus nepieciešams saspiest, norādīt compress uz true;
Ja integrējamai sistēmai, jau ir pieejami savas konfigurācijas datnes, tad līdzīgu loģiku iespējams nodrošināt arī „IntegrationMessage” un „IntegrationClient” klasēs.
[bookmark: _Toc201923226].NET bibliotēkas konfigurācijas piemērs
Minimālā .NET bibliotēkas konfigurācija ir sekojoša:
<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <configSections>
 <section name="div.client" type="Vraa.Div.Client.Configuration.MainSection, Vraa.Div.Client"/>
 </configSections>
 <certificates>
 <add thumbprint="6562daf69228df50a7f15b84dbd585bc25fef6b0"/>
 </certificates>
 </div.client>
</configuration>
Konfigurācijas piemērs ar visu konfigurācijas parametru aizpildīšanu:
<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <configSections>
 <section name="div.client" type="Vraa.Div.Client.Configuration.MainSection, Vraa.Div.Client"/>
 </configSections>
 <div.client
 serviceAddress="https://divtest.vraa.gov.lv/Vraa.Div.WebService.UnifiedInterface/UnifiedService.svc"
 timeout="120"
 compressByDefault="false"
 logPath ="c:\Log"
 srsEinvoiceEaddresse="VID_EREKINI_TEST@90000069281"
 encryptByDefault="true">
 <certificates>
 <add thumbprint="71 7c 2f 8f 70 04 63 49 eb c4 d2 c3 43 8e 41 3f b7 fc b0 88"/>
 <add thumbprint="A54303DEFDE7F678D9E105DB6804A38A74B4137D" isUserStore="true"/>
 </certificates>
 <fileTypes>
 <add extension="doc" compress="true" mimeType="application/msword"/>
 <add extension="zip" compress="false"/>
 </fileTypes>
 </div.client>
</configuration>
Aizpildot tikai minimālo konfigurācija datu komplektu, pārējās vērtības tiek uzstādītas no noklusētajām bibliotēkas vērtībām.
Konfigurācijas faila izmantošana ļauj mainīt vērtības bez DVS sistēmas koda izmaiņām, bibliotēkas klienta objekta izveidošanai nebūs vajadzīga obligāto parametru norādīšana:
IntegrationClient client = new IntegrationClient();
//...darbs ar bibliotēku
Bibliotēka atbalsta arī programmējamu konfigurācijas uzstādīšanu. Koda piemērs, kur tiek uzstādīta konfigurācija inicializējot bibliotēku .NET kodā:
ClientConfiguration clientConfig = new ClientConfiguration();
// Konfigurācijas uzstādīšana
clientConfig.ServiceAddress = "https://divtest.vraa.gov.lv/Vraa.Div.WebService.UnifiedInterface/UnifiedService.svc";
clientConfig.Certificates.Add("d9 94 3c 99 37 93 6b 7a 77 f1 d5 a8 dc d0 fe 4c e0 c0 aa 49");
clientConfig.Timeout = 100;
// Konfigurācijas nodošana bibliotēkai.
IntegrationClient client = new IntegrationClient(clientConfig);
//...darbs ar bibliotēku

[bookmark: _Toc201923227]JAVA bibliotēkas konfigurācijas piemērs
Minimālā Java bibliotēkas konfigurācija ir sekojoša:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<div.client>
 <certificates>
 <certificate>
 <store>PKCS12</store>
 <storeFile>C:\temp\Sertifikata_nosaukums.pfx</storeFile>
 <password>12345678</password>
 <thumbprint>0a a4 ef c6 87 6e 09 70 40 57 2c cb e6 ee ca 04 ec 65 0c 8d</thumbprint>
 </certificate>
 </certificates>
</div.client>
Konfigurācijas piemērs ar visu konfigurācijas parametru aizpildīšanu:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<div.client>
	<serviceAddress>https://divtest.vraa.gov.lv/Vraa.Div.WebService.UnifiedInterface/UnifiedService.svc</serviceAddress>
	<compressByDefault>true</compressByDefault>
	<encryptByDefault>false</encryptByDefault>
<logPath>C:\temp\log</logPath>
<srsEinvoiceEaddresse>VID_EREKINI_TEST@90000069281</srsEinvoiceEaddresse>
	<timeout>10</timeout>
	<certificates>
		<certificate>
			<store>PKCS12</store>
			<storeFile>C:\temp\sertifikats1.pfx</storeFile>
			<password>12345678</password>
			<thumbprint>2D 13 9D 32 C5 76 21 88 79 46 50 08 80 72 5F 2E 56 28 39 93</thumbprint>
		</certificate>
		<certificate>
 <store>PKCS12</store>
 <storeFile>C:\temp\sertifikats2.pfx</storeFile>
 <password>12345678</password>
 <thumbprint>0a a4 ef c6 87 6e 09 70 40 57 2c cb e6 ee ca 04 ec 65 0c 8d</thumbprint>
 </certificate>
	</certificates>
	<fileTypes>
		<fileType>
			<extension>txt</extension>
			<mimeType>text/plain</mimeType>
			<compress>true</compress>
		</fileType>
		<fileType>
			<extension>doc</extension>
			<mimeType>application/msword</mimeType>
			<compress>true</compress>
		</fileType>
		<fileType>
			<extension>zip</extension>
			<compress>false</compress>
		</fileType>
	</fileTypes>
</div.client>
Aizpildot tikai minimālo konfigurācija datu komplektu, pārējās vērtības tiek uzstādītas no noklusētajām bibliotēkas vērtībām.
Konfigurācijas faila izmantošana ļauj mainīt vērtības bez DVS sistēmas koda izmaiņām, bibliotēkas klienta objekta izveidošanai nebūs vajadzīga obligāto parametru norādīšana:
IntegrationClient client = new IntegrationClient();
//...darbs ar bibliotēku
Bibliotēka atbalsta arī programmējamu konfigurācijas uzstādīšanu. Koda piemērs, kur tiek uzstādīta konfigurācija inicializējot bibliotēku Java kodā:
ClientConfiguration clientConfig = new ClientConfiguration();
// Konfigurācijas uzstādīšana
clientConfig.setServiceAddress("https://divtest.vraa.gov.lv/Vraa.Div.WebService.UnifiedInterface/UnifiedService.svc");
clientConfig.setTimeout (100);
// Konfigurācijas nodošana bibliotēkai.
IntegrationClient client = new IntegrationClient(clientConfig);
//...darbs ar bibliotēku
[bookmark: _Toc201923228]Java bibliotēkas uzstādīšanas informācija
Lai korekti varētu lietot DIV JAVA bibliotēkas API (VraaDivClient.jar), nepieciešams „JAVA CLASSPATH” norādīt sekojošas trešo pušu bibliotēkas:
· serializer-2.7.1.jar
· webservices-api.jar - jābūt definētai kā "endorsed" bibliotēkai (skat. http://docs.oracle.com/javase/1.5.0/docs/guide/standards/index.html)
· webservices-extra.jar
· webservices-extra-api.jar
· webservices-rt.jar
· webservices-tools.jar
· xalan-2.7.1.jar

Lai nodrošinātu DIV nepieciešamo kodēšanas algoritmus, nepieciešams uzstādīt policy datnes, kas atļauj stiprākos kodēšanas algoritmus. Datnes jāuzstāda „$JRE/lib/security” mapē.
Java SE Runtime Environment 6 – jce_policy-6.zip (http://www.oracle.com/technetwork/java/javase/downloads/jce-6-download-429243.html);
Java SE Runtime Environment 7 – UnlimitedJCEPolicyJDK7.zip (http://www.oracle.com/technetwork/java/javase/downloads/jce-7-download-432124.html).
[bookmark: _Toc201923229]Bibliotēkas konfigurācijas parametru apraksts
Konfigurācijas parametri, kuri ir pieejami uzstādīšanai failā un programmatūras līmenī, būs ekvivalenti un ir aprakstīti tabulā „Tabula 2”.
[bookmark: _Ref323741551]Tabula 2: Bibliotēkas konfigurācija
	Nosaukums
	Tips
	Apraksts

	ServiceAddress
	string
	DIV servera adrese. Pēc noklusējuma tiek uzstādīta DIV produkcijas vides adrese.

	Timeout
	int
	Servisa atbildes noildzes laiks sekundēs.

	Certificates
	ClientCertificate
ReferenceCollection
	Klienta sertifikātu saraksts. Ciparsertifikāts tiks izmantots autentifikācijai, ziņojuma parakstīšanai, ienākošo ziņojumu atšifrēšanai. Izmantojamais sertifikāts atradīsies ciparsertifikātu glabātuvē. Ievērojot ciparsertifikāta potenciālo derīguma termiņa beigas, ir iespējams noradīt vairākus sertifikātus.

	FileTypes
	BaseCollection <FileTypeConfiguration>
	Datņu tipu informācijas saraksts, kurā var tikt definēti datņu tipi ar sekojošu informāciju:
· Compress - Neobligāts
· Extension - Obligāts
· MimeType - Obligāts
Datņu tipi nav obligāti jādefinē. Nedefinējot datņu tipu MimeType datnei tiks uzstādīts „application/octet-stream”, bet Compress tiek uzstādīta CompressByDefault vērtība.

	CompressByDefault
	bool
	Vai pēc noklusējuma faili tiks saspiesti. Neaizpildot vērtību tiks ņemta Bibliotēkas noklusētā vērtība - True

	EncryptByDefault
	bool
	Vai izejošie ziņojumi tiks šifrēti. Parametra vērtība tiek izmantota, ja ziņojuma nosūtīšanas brīdi šifrēšanas pielietojamība netiek norādīta. Neaizpildot vērtību tiks ņemta Bibliotēkas noklusētā vērtība - True

	LogPath
	string
	Ceļš uz log datni. Aizpildot vērtību ar ceļu uz log datni (piemēram “c:\log” vai “\usr\log”), tiek aktivizēta bibliotēkas logdatnes rakstīšana pie ziņojuma apstiprināšanas (confirmMessage). Log datnē tiek rakstīta informācija, kas palīdz analizēt problēmu, ja ziņojumu nevar apstiprināt.

	srsEinvoiceEaddresse
	string
	Eadreses adrese uz kurieni tiks sūtīta ziņojuma kopija, ja ziņojuma tips būs eRēķins (EINVOICE).

[bookmark: _Toc201923230]Izmantošanas scenāriji
[bookmark: _Toc201923231]Bibliotēkas pieslēgšana izstrādes videi
Bibliotēka DVS izstrādātājam tiek piegādāta pakotnes veidā – Vraa.Div.Client.dll (.NET) un vraa.div.client.jar (Java). Pēc pieslēgšanas izstrādes projektam, bibliotēkas funkcionalitāte ir pieejama klientu DVS sistēmas izstrādātājiem.
[bookmark: _Toc201923232]Bibliotēkas funkcionalitātes izmantošana
Bibliotēkas funkcionalitāte ir pieejama izmantojot IntegrationClient klases metodes. Pēc nepieciešamās funkcionalitātes izpildes būs nepieciešams norādīt izpildes scenārija beigas, saucot Close vai Dispose (tikai .NET) metodes. Autentifikācija un konteksta uzturēšana tiks realizētas bibliotēkas iekšējā daļā. Izmantošanas piemērs .NET un Java bibliotēkām:
using (IntegrationClient client = new IntegrationClient())
{
 //... darbs ar bibliotēku
}
Alternatīva pieeja izmantošanas apgabala noteikšanai un izpildes scenārija pabeigšanai:
IntegrationClient client = new IntegrationClient();

try
{
 //... darbs ar bibliotēku
}
finally
{
 client.Close();
}
[bookmark: _Toc201923233]Ziņojumu apmaiņas scenāriji
Ziņojuma pilnais apmaiņas scenārijs ir attēlots 1. attēlā.
[image:]
[bookmark: _Ref297042872]1. attēls Ziņojuma nosūtīšana
1. Ziņojuma sagatavošana nosūtīšanai;
2. Nosūtītāja sistēma nosūta izveidotu ziņojumu DIV sistēmai;
3. Saņēmēja sistēma ir informēta, ka ir saņemts jauns ienākošais ziņojums. Šim nolūkam tiek atbalstītas divas iespējas:
a. Paziņojumu saņemšana no DIV par ienākošiem ziņojumiem;
b. Regulāra ziņojumu pastkastītes pārbaude;
4. Saņēmēja sistēma izgūst pilnu ziņojumu;
5. Saņēmēja sistēma piekļūst ziņojuma informācijai;
6. Saņēmēja sistēma apstiprina ziņojuma saņemšanu;
7. Nosūtītājs regulāri izgūst paziņojumus par nosūtīto ziņojumu statusu.
[bookmark: _Ref297043015][bookmark: _Ref297043018][bookmark: _Ref297043127][bookmark: _Ref297043128][bookmark: _Ref323754315][bookmark: _Ref323754326][bookmark: _Toc201923234]Ziņojuma nosūtīšana bez datnēm
Ziņojuma nosūtīšanai bez datnēm ir nepieciešams:
1. izveidot IntegrationMessage klases instanci;
2. uzstādīt ziņojuma adresātu (s);
3. uzstādīt nosūtītāja e-adresi;
4. uzstādīt obligātos metadatus;
5. nosūtīt ziņojumu, saucot IntegrationClient klases SendMessage metodi.
Tehniskie ziņojuma metadati pēc iespējas tiek aizpildīti automātiski. Ziņojuma parakstīšanu pirms nosūtīšanas veic bibliotēka, izmantojot konfigurācijā norādīto sertifikātu.
.NET bibliotēkas koda piemērs
 static void SendMin()
 {
 IntegrationMessage message = new IntegrationMessage();
 //uzstāda ziņojuma nosūtītāju
 message.From = "_DEFAULT@90000000000";
 //uzstāda adresātu
 message.To = "_PRIVATE@10000000000";
 //uzstāda metadatus
 message.Document.Authors.AddInstitution("My institution name");
 message.Document.Kind.Code = "DOC_EMPTY";
 message.Document.Title = "Document simple title";
 // Tiek izgūts Aploksnes XML
 // Aploksnes XML izgūšana nav obligāta
 string xml = message.Xml;

 using (IntegrationClient client = new IntegrationClient())
 {
 string id = client.SendMessage(message);
 }
 }
[bookmark: _Ref323754339][bookmark: _Ref323754344]Java bibliotēkas koda piemērs
public void sendMin() {
	IntegrationMessage message = new IntegrationMessage();
	//uzstāda ziņojuma nosūtītāju
	message.setFrom("_DEFAULT@90000000000");
	//uzstāda adresātu
	message.setTo("_PRIVATE@10000000000");
	//uzstāda metadatus
	message.getDocument().getAuthors().addInstitution("My Institution");
	message.getDocument().getKind().setCode("DOC_EMPTY");
	message.getDocument().setTitle("My document title");

 // Tiek izgūts Aploksnes XML
 // Aploksnes XML izgūšana nav obligāta

	String xml = message.getXmlString();

	IntegrationClient client = new IntegrationClient();

	String id = client.sendMessage(message);
}
[bookmark: _Toc201923235]Ziņojuma nosūtīšana ar datnēm
Ziņojuma nosūtīšanai ar datnēm ir nepieciešams:
1. izveidot IntegrationMessage klases instanci;
2. uzstādīt ziņojuma adresātu(s);
3. uzstādīt nosūtītāja e-adresi;
4. uzstādīt obligātos metadatus;
5. pievienot datnes;
6. nosūtīt ziņojumu, saucot IntegrationClient klases SendMessage metodi.
Tehniskie ziņojuma metadati pēc iespējas tiek aizpildīti automātiski. Ziņojuma parakstīšanu pirms nosūtīšanas veic bibliotēka, izmantojot konfigurācijā norādīto sertifikātu.
.NET bibliotēkas koda piemērs
 static void SendMinWithFiles()
 {
 IntegrationMessage message = new IntegrationMessage();
 //uzstāda ziņojuma nosūtītāju
 message.From = "_DEFAULT@90000000000";
 //uzstāda adresātus
 message.To = "_DEFAULT@90000000000; _PRIVATE@10000000000";
 //uzstāda metadatus
 message.Document.Authors.AddInstitution("My institution name");
 message.Document.Kind.Code = "DOC_EMPTY";
 message.Document.Title = "Document simple title";

 //faila pievienošana no atmiņas
 byte[] file0 = new byte[] { 112 };
 message.Document.Files.Add(file0, "first file");

 //faila pievienošana no straumes
 using (FileStream stream = File.Open("delivery.zip", FileMode.Open))
 {
 MessageFile file = new MessageFile();
 file.SetContent(stream);
 file.Name = "delivery.zip";
 file.AppendixNumber = 1;
 message.Document.Files.Add(file);

 using (IntegrationClient client = new IntegrationClient())
 {
 string id = client.SendMessage(message);
 }
 }
 }

[bookmark: _Ref297034529][bookmark: _Ref297034531][bookmark: _Ref297043034][bookmark: _Ref297043037][bookmark: _Ref323754358][bookmark: _Ref323754368]Java bibliotēkas koda piemērs
	public void SendMinWithFiles() throws FileNotFoundException,
			KeyStoreException, InterruptedException {
		IntegrationMessage message = new IntegrationMessage();
		// uzstāda ziņojuma nosūtītāju
		message.setFrom("_DEFAULT@90000000000");
		// uzstāda adresātus
		message.setTo("_DEFAULT@90000000000; _PRIVATE@10000000000");
		// uzstāda metadatus
		message.getDocument().getAuthors().addInstitution("My Institution");
		message.getDocument().getKind().setCode("DOC_EMPTY");
		message.getDocument().setTitle("My document title");

		// faila pievienošana no atmiņas
		byte[] file0 = new byte[] { 112 };
		message.getDocument().getFiles().add(file0, "first file");

		// faila pievienošana no straumes
		FileInputStream stream = new FileInputStream(
				"delivery.zip");
		MessageFile file1 = new MessageFile();
		file1.setContent(stream);
		file1.setName("delivery.zip");
		message.getDocument().getFiles().add(file1);
		IntegrationClient client = new IntegrationClient();

		String serverId = client.sendMessage(message);
	}
[bookmark: _Toc201923236]Atbildes ziņojuma sūtīšana par saņemtu ziņojumu
Ja DVS sistēma atbild uz kādu saņemtu ziņojumu, tad ir nepieciešams aizpildīt trasējamības lauku struktūru (TraceInfo) ar Ziņojuma servera identifikatoru (MessageId).
Šo lauku mērķis ir nodrošināt ziņojumu un atbilžu izsekošanu. Lai to varētu nodrošināt, DVS, saņemot ziņojumu, šie lauki jāsaglabā un, nosūtot atbildes ziņojumu, attiecīgi jāieraksta trasējamības laukos tā ziņojuma attiecīgais identifikācijas numurs, uz kuru tiek sniegta atbilde.
[bookmark: _Ref330814939][bookmark: _Ref330814948][bookmark: _Toc201923237]Ziņojuma sūtīšanas tehniskie parametri
Ziņojuma sūtīšanas tehniskie parametri ir definēti kā īpašības IntegrationMessage klasē. Parametri ir aprakstītai 3. Tabulā.
[bookmark: _Ref297036336]3. tabula Ziņojuma sūtīšanas tehniskie parametri
	Īpašība
	Skaidrojums

	EnableEncryption
	Ziņojuma piesaistīto datņu šifrēšanas pielietošanas norādīšana
· True – šifrēt piesaistīto datņu saturu;
· False – pārsūtīt datnes nešifrēta veidā;
· Null – Tiek izmantota bibliotēkas konfigurācijas vērtība.

	NotificationRequired
	Vai sūtītājam būs iespējams saņemt paziņojumus par ziņojuma piegādes statusu. Tādu paziņojumu saņemšana aprakstīta nodaļā [4.3.8].
· true – sistēma ģenerēs paziņojumus par ziņojuma saņemšanu/noraidīšanu.
· false – sistēma neveidos paziņojumus.
Paziņojumi par nokavētu piegādi tiek veidoti vienmēr.

	ClientId
	Klienta identifikators, pēc kā tiek identificēts no DVS izejošais sūtījums. Ja lauks netiek aizpildīts, tad Bibliotēka uzģenerē identifikatoru vērtību pati.

	DeliveryBy
	Sūtītāja uzstādīts ziņojuma piegādes laika ierobežojums. Pēc šī laika, ja ziņojums netiks apstiprināts, tika uzsākts nokavētas piegādes process un ziņojums izgūšanai vairs nebūs pieejams. Ja lauks nav aizpildīts, tad Serveris uzstāda vērtību no konfigurācijas.

Ziņojumam piesaistīto datņu šifrēšanu nosaka bibliotēkas konfigurācija, vai arī individuālā ziņojuma sūtīšanas īpašība gadījumā, ja šifrēšana ir iespējota, bibliotēka automātiski vērsīsies pie Adresātu kataloga funkcionalitātes publiskās adresāta atslēgas izgūšanai un veiks satura šifrēšanu.
Papildus ziņojuma sūtīšanas iestatījumi iekļaus pazīmi, vai sūtītājs vēlas saņemt paziņojumu par ziņojuma veiksmīgu pārsūtīšanu adresātam vai pārsūtīšanas kļūdu.
.NET bibliotēkas koda piemērs
 // Uzstāda šifrēšanu
 message.EnableEncryption = true;

 // Uzstāda paziņojumu saņemšanu
 message.EnableNotifications = true;

 // Uzstāda klienta identifikatoru
 message.ClientId = "AB123C";

 // Uzstāda ziņojuma piegādes ierobežojumu

 message.DeliveryBy = DateTime.Now.AddDays(1);
[bookmark: _Ref297034490][bookmark: _Ref297034499][bookmark: _Ref297043043][bookmark: _Ref297043046]Java bibliotēkas koda piemērs
		// Uzstāda šifrēšanu
		message.setEnableEncryption(true);

		// Uzstāda paziņojumu saņemšanu
		message.setEnableNotifications(true);

		// Uzstāda klienta identifikatoru
		message.setClientId("ABC123");

		// Uzstāda ziņojuma piegādes ierobežojumu
		Calendar c1 = Calendar.getInstance();
		c1.add(Calendar.DATE, 1);
		message.setDeliveryBy(c1.getTime());
[bookmark: _Ref330913694][bookmark: _Ref335384853][bookmark: _Toc201923238]Ziņojumu specifisko metadatu uzstādīšana, izmantojot XML failu
Bibliotēka nodrošina specifisko ziņojuma metadatu uzstādīšanu. Ziņojuma metadati un to struktūra ir aprakstīta Sākotnējo standartu dokumentā [3]. Ziņojuma specifiskie metadati tiek uzstādīti DocumentExtendedMetadata klasē.
Katram sistēmā definētajam dokumentu veidam, atbilstoši definētajam standartam ir piesaistīta shēma – uzstādītajiem metadatiem jāatbilst definētajai shēmai.
.NET bibliotēkas koda piemērs
 static void SendMinExtended()
 {
 IntegrationMessage message = new IntegrationMessage();

 //uzstāda ziņojuma nosūtītāju
 message.From = "_DEFAULT@90000000000";
 //uzstāda adresātus
 message.To = "_DEFAULT@90000000000; _PRIVATE@10000000000";
 //Uzstāda obligātos metadatus
 message.Document.Authors.AddInstitution("My institution name");
 message.Document.Title = "Document simple title";
 // Uzstāda dokumenta veidu, kam piesaistīti paplašinātie meta dati.
 message.Document.Kind.Code = "DOC_EMPTY";
 // Uzstāda dokumenta veida versiju. Ja lauks netiek aizpildīts,
 //pēc noklusējuma tiek uzstādīta versija 1.0.
 message.Document.Kind.Version = "1.0";
 // Tiek ielasīts XML fails, kurā ir aizpildīti dati,
 // atbilstoši dokumenta veida shēmai.
 string docAppl =
 System.IO.File.ReadAllText("extended.xml");
 // No faila ielasītie metadati tiek sagatavoti sūtīšanai.
 message.Document.ExtendedMetadata.Xml = docAppl;

 using (IntegrationClient client = new IntegrationClient())
 {
 string id = client.SendMessage(message);
 }
 }
Java bibliotēkas koda piemērs
public void SendMinExtended() throws KeyStoreException, InterruptedException, IOException {
	IntegrationMessage message = new IntegrationMessage();

	//uzstāda ziņojuma nosūtītāju
	message.setFrom("_DEFAULT@90000000000");
	//uzstāda adresātus
	message.setTo("_DEFAULT@90000000000; _PRIVATE@10000000000");
	//Uzstāda obligātos metadatus
	message.getDocument().getAuthors().addInstitution("My Institution");
	message.getDocument().setTitle("Document simple titl");
	// Uzstāda dokumenta veidu, kam piesaistīti paplašinātie meta dati.
	message.getDocument().getKind().setCode("DOC_EMPTY");
	// Uzstāda dokumenta veida versiju. Ja lauks netiek aizpildīts,
	//pēc noklusējuma tiek uzstādīta versija 1.0.
	message.getDocument().getKind().setVersion("1.0");
	// Tiek ielasīts XML fails, kurā ir aizpildīti dati,
	// atbilstoši dokumenta veida shēmai.
	StreamToString sToS = new StreamToString();
	InputStream in = getClass().getResourceAsStream(
			"recources/extended.xml");
	String xml = sToS.convertStreamToString(in);
	// No faila ielasītie metadati tiek sagatavoti sūtīšanai.
	message.getDocument().getExtendedMetadata().setXml(xml);
	

	IntegrationClient client = new IntegrationClient();
	String serverId = client.sendMessage(message);
}
Iesnieguma paplašināto metadatu XML datnes piemērs
<q1:Application DocumentKind="IESNIEGUMS" p2:schemaLocation="http://ivis.eps.gov.lv/XMLSchemas/100001/DIV/Application/v1-0/ExtendedMetadata-Application.xsd" xmlns:q1="http://ivis.eps.gov.lv/XMLSchemas/100001/DIV/Application/v1-0" xmlns:p2="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://ivis.eps.gov.lv/XMLSchemas/100001/DIV/v1-0">
	<q1:AdditionalContactInfo>Papildus kontaktinformācija</q1:AdditionalContactInfo>
	<q1:ApplicationKind>
		<DocumentKindCode>CITS</DocumentKindCode>
		<DocumentKindVersion>001</DocumentKindVersion>
		<DocumentKindName>Iesniegums</DocumentKindName>
	</q1:ApplicationKind>
	<q1:HasElectronicSignature>false</q1:HasElectronicSignature>
	<q1:AnswerOptional>false</q1:AnswerOptional>
</q1:Application>
[bookmark: _Ref335809989][bookmark: _Toc201923239][bookmark: _Ref297036825]Ziņojumu specifisko metadatu uzstādīšana, izmantojot datu klases
Ziņojuma specifiskos meta datus ir iespējams uzstādīt, izmantojot XML datnes, kā tas aprakstīts nodaļā [4.3.5]. Lai atvieglotu sistēmu integrāciju, tiek piedāvāta ziņojuma specifisko meta datu pievienošana, izmantojot datu klases.
[bookmark: _Ref335391842].NET bibliotēkas koda piemērs
static void SendMinExtendedObject()
{
 IntegrationMessage message = new IntegrationMessage();
 //uzstāda ziņojuma nosūtītāju
 message.From = "_DEFAULT@90000000000";
 //uzstāda adresātus
 message.To = "_DEFAULT@90000000000; _PRIVATE@10000000000";
 //Uzstāda obligātos metadatus
 message.Document.Authors.AddInstitution("My institution name");
 message.Document.Title = "Document simple title";
 // Uzstāda dokumenta veidu, kam piesaistīti paplašinātie meta dati.
 message.Document.Kind.Code = "DOC_EMPTY";
 // Uzstāda dokumenta veida versiju. Ja lauks netiek aizpildīts,
 //pēc noklusējuma tiek uzstādīta versija 1.0.
 message.Document.Kind.Version = "1.0";
 // Datu klases tiek aizpildītas ar datiem
 ExtendedApplication ap = new ExtendedApplication()
 {
 AdditionalContactInfo = "Papildus kontaktinformācija",
 AnswerOptional = false,
 HasElectronicSignature = false,
 ApplicationKind = new ExtendedApplicationKind()
 {
 DocumentKindCode = "CITS",
 DocumentKindName = "Iesniegums",
 DocumentKindVersion = "001"
 }
 };
 message.Document.ExtendedMetadata.SetObject<ExtendedApplication>(ap);
 using (IntegrationClient client = new IntegrationClient())
 {
 string id = client.SendMessage(message);
 }
}
.NET datu klases piemērs
Piemērā tiek demonstrēta manuāli veidota .NET datu klases, kas atbilst nodaļā [4.3.6.1] aprakstītā piemēra datu klasei. Automātiskai datu klašu veidošanai no XSD datnes priekš .NET, ieteicams izmantot XSD rīku (XML Shēmu definēšanas rīku).
[Serializable]
[XmlRootAttribute(Namespace = "http://ivis.eps.gov.lv/XMLSchemas/100001/DIV/v1-0")]
public class ExtendedApplicationKind
{
 public string DocumentKindCode { get; set; }
 public string DocumentKindVersion { get; set; }
 public string DocumentKindName { get; set; }
}
[Serializable]
[XmlRootAttribute("Application",
 Namespace = "http://ivis.eps.gov.lv/XMLSchemas/100001/DIV/Application/v1-0",
 IsNullable = false)]
public class ExtendedApplication
{
 [XmlAttribute]
 public string DocumentKind = "IESNIEGUMS";

 [XmlAttributeAttribute("schemaLocation",
 Namespace = "http://www.w3.org/2001/XMLSchema-instance")]
 public string schemaLocation =
 "http://ivis.eps.gov.lv/XMLSchemas/100001/DIV/Application/v1-0/ExtendedMetadata-Application.xsd";

 public string AdditionalContactInfo { get; set; }
 public ExtendedApplicationKind ApplicationKind { get; set; }

 public bool? HasElectronicSignature { get; set; }
 /* Datu klases konstrukcijas, kas jālieto, ja kāds lauks nav obligāts.*/
 public bool ShouldSerializeHasElectronicSignature()
 {
 return HasElectronicSignature.HasValue;
 }
 public bool AnswerOptional { get; set; }
}
[bookmark: _Ref335385220]Java bibliotēkas koda piemērs
public void SendMinExtendedObject() throws FileNotFoundException,
		KeyStoreException, InterruptedException {
	IntegrationMessage message = new IntegrationMessage();

	// uzstāda ziņojuma nosūtītāju
	message.setFrom("sets@domain1");
	// uzstāda adresātus
	message.setTo("sets@domain2");
	// Uzstāda obligātos metadatus
	message.getDocument().getAuthors().addInstitution("My Institution");
	message.getDocument().setTitle("Document simple titl");
	// Uzstāda dokumenta veidu, kam piesaistīti paplašinātie meta dati.
	message.getDocument().getKind().setCode("DOC_EMPTY");
	// Uzstāda dokumenta veida versiju. Ja lauks netiek aizpildīts,
	// pēc noklusējuma tiek uzstādīta versija 1.0.
	message.getDocument().getKind().setVersion("1.0");
	// Datu klases tiek aizpildītas ar datiem
	DocumentKindStructure ApplicationKind = new DocumentKindStructure();
	ApplicationKind.setDocumentKindCode("CITS");
	ApplicationKind.setDocumentKindName("Iesniegums");
	ApplicationKind.setDocumentKindVersion("001");

	ExtendedApplication ap = new ExtendedApplication();
	ap.setAdditionalContactInfo("Papildus kontaktinformācija");
	ap.setApplicationKind(ApplicationKind);
	ap.setAnswerOptional(false);
	ap.setHasElectronicSignature(false);
	// Datu klases tiek pievienota ziņojumam kā paplašinātie meta dati
	message.getDocument().getExtendedMetadata()
		.setObject(
			"Application", // XML saknes elementa nosaukums
			// XML vārdu telpa (namespace) specifiskajiem metadatiem
			"http://ivis.eps.gov.lv/XMLSchemas/100001/DIV/Application/v1-0",
			// Specifisko metadatu datu klase
			ExtendedApplication.class,
			// Specifisko metadatu datu objekts
			ap);
	// Ziņojuma sūtīšana
	IntegrationClient client = new IntegrationClient();
	String id = client.sendMessage(message);
}
Java datu klases piemērs
Piemērā tiek demonstrēta manuāli veidota Java datu klases, kas atbilst nodaļā [4.3.6.3] aprakstītā piemēra datu klasei. Automātiskai datu klašu veidošanai no XSD datnes priekš Java, ieteicams izmantot JAXB bibliotēku.
	@XmlRootElement(namespace = "http://ivis.eps.gov.lv/XMLSchemas/100001/DIV/v1-0")
	@XmlAccessorType(XmlAccessType.FIELD)
	static class DocumentKindStructure {
	 @XmlElement(required = true, namespace = "http://ivis.eps.gov.lv/XMLSchemas/100001/DIV/v1-0")
	 protected String DocumentKindCode;
	 @XmlElement(required = true,namespace = "http://ivis.eps.gov.lv/XMLSchemas/100001/DIV/v1-0")
	 protected String DocumentKindVersion;
	 @XmlElement(namespace = "http://ivis.eps.gov.lv/XMLSchemas/100001/DIV/v1-0")
	 protected String DocumentKindName;
	 public String getDocumentKindCode() {
	 return DocumentKindCode;
	 }
	 public void setDocumentKindCode(String value) {
	 this.DocumentKindCode = value;
	 }
	 public String getDocumentKindVersion() {
	 return DocumentKindVersion;
	 }
	 public void setDocumentKindVersion(String value) {
	 this.DocumentKindVersion = value;
	 }
	 public String getDocumentKindName() {
	 return DocumentKindName;
	 }
	 public void setDocumentKindName(String value) {
	 this.DocumentKindName = value;
	 }
	}
	@XmlRootElement(namespace = "http://ivis.eps.gov.lv/XMLSchemas/100001/DIV/Application/v1-0", name = "Application")
	@XmlAccessorType(XmlAccessType.FIELD)
	public static class ExtendedApplication {
		@XmlAttribute (name = "DocumentKind")
		protected String DocumentKind = "IESNIEGUMS";
		@XmlAttribute(name = "schemaLocation", namespace = "http://www.w3.org/2001/XMLSchema-instance")
		protected String schemaLocation = "http://ivis.eps.gov.lv/XMLSchemas/100001/DIV/Application/v1-0/ExtendedMetadata-Application.xsd";
		@XmlElement(namespace = "http://ivis.eps.gov.lv/XMLSchemas/100001/DIV/Application/v1-0")
		protected String AdditionalContactInfo;
		@XmlElement(namespace = "http://ivis.eps.gov.lv/XMLSchemas/100001/DIV/Application/v1-0")
		protected DocumentKindStructure ApplicationKind;
		@XmlElement(namespace = "http://ivis.eps.gov.lv/XMLSchemas/100001/DIV/Application/v1-0")
		protected Boolean HasElectronicSignature;
		@XmlElement(namespace = "http://ivis.eps.gov.lv/XMLSchemas/100001/DIV/Application/v1-0")
		protected Boolean AnswerOptional;
		public String getAdditionalContactInfo() {
			return AdditionalContactInfo;
		}
		public void setAdditionalContactInfo(String additionalContactInfo) {
			AdditionalContactInfo = additionalContactInfo;
		}
		public DocumentKindStructure getApplicationKind() {
			return ApplicationKind;
		}
		public void setApplicationKind(DocumentKindStructure applicationKind) {
			ApplicationKind = applicationKind;
		}
		public Boolean getHasElectronicSignature() {
			return HasElectronicSignature;
		}
		public void setHasElectronicSignature(Boolean hasElectronicSignature) {
			HasElectronicSignature = hasElectronicSignature;
		}
		public Boolean getAnswerOptional() {
			return AnswerOptional;
		}
		public void setAnswerOptional(Boolean answerOptional) {
			AnswerOptional = answerOptional;
		}
	}
[bookmark: _Toc201923240]Ziņojuma specifisko metadatu izgūšana
Bibliotēka nodrošina specifisko ziņojuma metadatu izgūšanu. Ziņojuma metadati un to struktūra ir aprakstīta Sākotnējo standartu dokumentā [3]. Ziņojuma specifiskie metadati tiek izgūti DocumentExtendedMetadata klasē.
.NET bibliotēkas koda piemērs
static void GetMinExtended()
{
 // Tiek inicializēta bibliotēka
 using (IntegrationClient client = new IntegrationClient())
 {
 // Tiek izgūts ziņojums
 var msg = client.GetMessage();
 // Tiek izgūts ziņojuma veida kods
 String code = msg.Document.Kind.Code;
 // Tiek izgūts ziņojuma veida versija
 String version = msg.Document.Kind.Version;
 // Tiek pārbaudīts, vai ziņojuma veids ir "Iesniegums".
 // Ja ziņojuma veids ir "Iesniegums", tad tiek izgūti ziņojumam
 // piesaistītie meta dati.
 if (code == "DOC_EMPTY" && version == "1.0")
 {
 // Paplašināto meta datu ielasīšana datu objektā
 ExtendedApplication ap =
 msg.Document.ExtendedMetadata.GetObject<ExtendedApplication>();
 // Paplašināto meta datu ielasīšana XML
 String xml = msg.Document.ExtendedMetadata.Xml;
 }
 // Tiek veikta ziņojuma apstiprināšana
 client.ConfirmMessage(msg);
 }
}
Java bibliotēkas koda piemērs
public void getMinExtended() throws KeyStoreException,
		InterruptedException, IOException {
	// Tiek inicializēta bibliotēka
	IntegrationClient client = new IntegrationClient();
	// Tiek izgūts ziņojums
	IntegrationMessage msg = client.getMessage();
	// Tiek izgūts ziņojuma veida kods
	String code = msg.getDocument().getKind().getCode();
	// Tiek izgūts ziņojuma veida versija
	String version = msg.getDocument().getKind().getVersion();
	// Tiek pārbaudīts, vai ziņojuma veids ir "Iesniegums".
	// Ja ziņojuma veids ir "Iesniegums", tad tiek izgūti ziņojumam
	// piesaistītie meta dati.
	if (code.equals("DOC_EMPTY") && version.equals("1.0")) {
		ExtendedApplication ap = new ExtendedApplication();
		// Paplašināto meta datu ielasīšana datu objektā
		ap = msg.getDocument().getExtendedMetadata()
				.getObject(ExtendedApplication.class);
		// Paplašināto meta datu ielasīšana XML
		String xml = msg.getDocument().getExtendedMetadata().getXml();
	}
	// Tiek veikta ziņojuma apstiprināšana
	client.confirmMessage(msg);
}
[bookmark: _Ref335809482][bookmark: _Ref335809808][bookmark: _Toc201923241]Paziņojumu (notifikāciju) saņemšana
Klienta DVS sistēmai ir iespējams saņemt un apstrādāt notifikācijas par nosūtītajiem ziņojumiem. Notifikāciju saņemšanai klienta programmatūra sauc GetNotifications metodi. Notifikācijas informē par jauniem ziņojumiem pastkastītē, par veiksmīgu ziņojumu apstrādi DIV serverī, par ziņojuma nogādāšanu adresāta sistēmā, vai arī saturēs kļūdas kodu un problēmas aprakstu. Piemēri paredzēti tikai, lai ilustrētu sistēmas iespējas. Notifikācijas tiek sagatavotas pēc FIFO principa, tādējādi rekomendētā pieeja ir apstiprināt visas notifikācijas secīgi.
.NET bibliotēkas koda piemērs
 static void GetSenderNotifications()
 {
 using (IntegrationClient client = new IntegrationClient())
 {
 // tiek izgūts notifikāciju saraksts
 var notifications = client.GetNotifications();
 // tiek izveidots aptiprināmo notifikāciju objekts
 List<Notification> toConfirm = new List<Notification>();
 // tiek apstrādātas DIV servera sūtītās notifikācijas
 var msgProccessedNotifications =
 notifications.Where(n => n.NotificationType ==
 NotificationType.MessageProcessed);

 foreach (var notifyData in msgProccessedNotifications)
 {
 // Tiek apstrādātas norifikācijas, kas informē par ziņojumiem,
 // kurus serveris ir apstiprinājis.
 if (notifyData.ServerStatus == MessageStatus.Accepted)
 {
 // Tiek izgūts Ziņojuma DIV apliecinājums
 var serverConfirm =
 client.GetServerConfirmation(notifyData.MessageId);
 // Servera apliecinājums tiek sagatavots XML veidā
 string xml = serverConfirm.Xml;
 // Notifikācija tiek pievienota pie apstiprināmo
 // notifikāciju saraksta
 toConfirm.Add(notifyData);
 }
 }
 if (toConfirm.Count > 0)
 {
 // Tiek veikta notifikāciju apstiprināšana
 client.ConfirmNotifications(toConfirm);
 }
 }
 }
Java bibliotēkas koda piemērs
IntegrationClient client = new IntegrationClient();
try {
	// tiek izgūts notifikāciju saraksts
	List<Notification> notifications = client.getNotifications();
	// tiek izveidots aptiprināmo notifikāciju objekts
	List<Notification> toConfirm = new ArrayList<Notification>();
	for (Notification notifyData : notifications) {
		// tiek apstrādātas DIV servera sūtītās notifikācijas
		if (notifyData.getNotificationType() != NotificationType.MessageProcessed)
			continue;
		// Tiek apstrādātas norifikācijas, kas informē par ziņojumiem,
		// kurus serveris ir apstiprinājis.
		if (notifyData.getServerStatus() == MessageStatus.Accepted) {
			// var aplūkot DIV apliecinājumu
			MessageServerConfirmation serverConfirm = client
					.getServerConfirmation(notifyData.getMessageId());
			// Servera apliecinājums tiek sagatavots XML veidā
			Element xml = serverConfirm.getXml();
			// Notifikācija tiek pievienota pie apstiprināmo
			// notifikāciju saraksta
			toConfirm.add(notifyData);
		}
	}
	// Tiek veikta notifikāciju apstiprināšana
	if (!toConfirm.isEmpty())
		client.confirmNotifications(toConfirm);
} finally {
	client.close();
}
[bookmark: _Ref335829707][bookmark: _Toc201923242]Paziņojumu (notifikāciju) apstiprināšana
Lai piekļūtu nākamajām notifikācijām, ir jāveic notifikāciju apstiprināšana. Nodaļā [4.3.8] apskatītā piemēra beigās tiek parādīts metodes ConfirmNotifications izsaukums.
[bookmark: _Toc201923243]Paziņojumu (notifikāciju) saņemšana, izmantojot tīmekļa pakalpi
Klienta sistēmas opcionāli varēs saņemt un apstrādāt DIV paziņojumus sinhroni, izmantojot tīmekļa pakalpi. Lai saņemtu paziņojumus šādā veidā, DVS izstrādātājiem būs nepieciešamas izstrādāt un izvērst tīmekļa pakalpi (web service) atbilstoši WSDL definīcijai, kura tiks noteikta DIV sistēmas izstrādes laikā. Izvērstās tīmekļa pakalpes adresei jābūt piereģistrētai DIV sistēmas klienta pieslēguma konfigurācijā (DIV administēšanas vietnē). DIV sauks noteiktu tīmekļa pakalpes metodi, sniedzot informāciju par ziņojumu metodes parametru datu struktūrā.
Paziņojumi, kas saņemti izmantojot tīmekļa pakalpi, arī ir jāapstiprina atbilstoši nodaļai [4.3.9].
[bookmark: _Ref297043482][bookmark: _Ref322451393][bookmark: _Toc201923244]Ziņojumu saņemšana bez datnēm, izgūstot ziņojuma galveni
Bibliotēkas funkcionalitāte iekļauj ziņojumu galvenes saraksta izgūšanu no klienta DVS pastkastītes. Ziņojuma galvenes informācija iekļauj ziņojuma nosūtītāju, identifikatorus un citu pamata informāciju, bet nesatur ziņojuma rumpi un piesaistītās datnes. Ziņojuma galvenes saraksta atlasīšanai tiek izmantota GetMessageHeaders metode, kurai ir vairākas saukšanas iespējas dažādu scenāriju atbalstam:
· ziņojumu informācijas izgūšana;
· ziņojumu atlase pēc adresācijas vienības;
· maksimālā atlasīto ziņojuma informācijas vienumu skaita norādīšana (saraksta izgūšana pa daļām).
Ziņojuma galvenes informācija, kura tiek reprezentēta ar IntegrationMessageHeader klasi, var tikt izmantota visa ziņojuma satura izgūšanai, nododot to GetMessage metodei. Sekojošais piemērs izgūst jaunu ziņojumu sarakstu, pēc tam lejupielādējot pirmo ziņojumu:
.NET bibliotēkas koda piemērs
 static void GetMin()
 {
 using (IntegrationClient client = new IntegrationClient())
 {
 // Tiek izgūts ziņojumu saraksts
 var msgList = client.GetMessageHeaders();

 if (msgList.Count > 0)
 {
 // Tiek izgūts ziņojums
 var msg = client.GetMessage(msgList[0].MessageId);

 string from = msg.From;
 string id = msg.MessageId;
 // Tiek veikta ziņojuma apstiprināšana
 client.ConfirmMessage(msg);
 }
 }
 }
Java bibliotēkas koda piemērs
public void getMin() throws KeyStoreException, InterruptedException,
IOException{
	IntegrationClient client = new IntegrationClient();
	// Tiek izgūts ziņojumu saraksts
 List<IntegrationMessageHeader> head =
 		client.getMessageHeaders();
 if (head.size()>0){
 	// Tiek izgūts ziņojums
 	IntegrationMessage msg =
 			client.getMessage(head.get(0).getMessageId());
 	String from = msg.getFrom();
 	String to = msg.getTo();
 // Tiek veikta ziņojuma apstiprināšana
 client.confirmMessage(msg);
 }
}
[bookmark: _Toc201923245]Ziņojumu saņemšana bez datnēm, izgūstot pēc kārtas
	Jaunus ziņojumus ir iespējams saņemt arī pa vienam, bez saraksta izgūšanas, saucot GetMessage metodi bez parametriem. Tādējādi tiek izgūts vecākais neapstiprinātais ziņojums.
.NET bibliotēkas koda piemērs
[bookmark: _Ref323754711][bookmark: _Ref323754723][bookmark: _Ref297043759][bookmark: _Ref297043760] using (IntegrationClient client = new IntegrationClient())
 {
 IntegrationMessage message;

 while ((message = client.GetMessage()) != null)
 {
 //sauc dvs funkcionalitāti ziņojuma apstrādei
 ProcessMessage(message);
 // Tiek veikta ziņojuma apstiprināšana
 client.ConfirmMessage(message);

 }
 }
Java bibliotēkas koda piemērs
		IntegrationClient client = new IntegrationClient();
		IntegrationMessage msg = new IntegrationMessage();
		while ((msg = client.getMessage()) != null){
			// sauc dvs funkcionalitāti ziņojuma apstrādei
			 ProcessMessage(msg);
			// Tiek veikta ziņojuma apstiprināšana
			client.confirmMessage(msg);
		}
[bookmark: _Toc201923246]Ziņojumu saņemšana ar datnēm
Ziņojumu saņemšanu ar datnēm veic līdzīgi kā aprakstīts nodaļā „4.3.11 Ziņojumu saņemšana bez datnēm”. Galvenā atšķirība ir, ka pēc ziņojuma izgūšanas ir jāizgūst katra datne.
.NET bibliotēkas koda piemērs
static void GetWithFiles()
{
 using (IntegrationClient client = new IntegrationClient())
 {
 var msg = client.GetMessage();
 var path = "C:\\temp\\data\\get\\";
 if (msg != null)
 {
 if (msg.Document.Files.Count > 0)
 {
 using (var fileContext = msg.CreateFileContext())
 {
 foreach (var file in msg.Document.Files)
 {
 //tikai piemēra nolūkos demonstrē darbu
 //gan ar atmiņas buferi, gan straumi
 if (file.Size > 2097152)
 {
 using (var fileOut =
 File.Open(path + "inc_" + file.Name, FileMode.Create))
 {
 // Piemērs scenārijam ar straumi
 client.SaveMessageFileContent(file,
 fileOut, fileContext);
 }
 }
 else
 {
 // Piemērs scenārijam ar atmiņas buferi
 byte[] content =
 client.GetMessageFileContent(file, fileContext);
 File.WriteAllBytes(path + "inc_" + file.Name, content);
 }
 }
 }
 }
 // Ziņojuma apstiprināšana
 client.ConfirmMessage(msg);
 }
 }
}
Java bibliotēkas koda piemērs
public void GetWithFiles() throws KeyStoreException, InterruptedException,
		IOException {
	IntegrationClient client = new IntegrationClient();
	try {
		IntegrationMessage message = client.getMessage();
		String path = "C:\\temp\\data\\get\\";
		if (message != null) {
			if (message.getDocument().getFiles().size() > 0) {
				FileReceiveContext fileContext = message
						.createFileContext();
				MessageFileCollection myFiles = message.getDocument()
						.getFiles();
				for (MessageFile file : myFiles) {
					FileOutputStream fos = new FileOutputStream(path
							+ "inc_" + file.getName());
					// tikai piemēra nolūkos demonstrē darbu
					// gan ar atmiņas buferi, gan straumi
					if (file.getSize() > 2097152) {
						// Piemērs scenārijam ar straumi
						client.saveMessageFileContent(file, fos,
								fileContext);
					} else {
						// Piemērs scenārijam ar atmiņas buferi
						byte[] content = client.getMessageFileContent(file,
								fileContext);
						fos.write(content);
					}
				}
			}
		}
		// Ziņojuma apstiprināšana
		client.confirmMessage(message);
	} finally {
		client.close();
	}
[bookmark: _Ref323754800][bookmark: _Ref323754804][bookmark: _Toc201923247]Ziņojumu sinhrona apstiprināšana
	Pēc ziņojuma lejupielādes klienta DVS sistēma sūta apstiprinājumu DIV, ka ziņojums ir saņemts, izmantojot ConfirmMessage metodi, vai arī noraida ziņojuma saņemšanu ar accept = false parametra palīdzību. Papildus ir iespēja uzstādīt noraidīšanas iemeslu un iemesla kodu (text un code).
.NET bibliotēkas koda piemērs
 static void GetMinConfirmAll()
 {

 using (IntegrationClient client = new IntegrationClient())
 {
 IntegrationMessage msg;
 //tiek izgūts ziņojums pa vienam
 while ((msg = client.GetMessage()) != null)
 {
 //dvs veic specifiskās pārbaudes
 bool isValid = ValidateMetadata(message);

 if (isValid)
 {
 // Ziņojumu akceptē
 client.ConfirmMessage(msg);
 }
 else
 {
 // Ziņojumu noraida
 client.ConfirmMessage(msg, false, "ERR1", "Error");
 }

 }
 }
 }
Java bibliotēkas koda piemērs
public void GetMinConfirmAll() throws FileNotFoundException,
		KeyStoreException, InterruptedException {
	IntegrationClient client = new IntegrationClient();
	try {
		IntegrationMessage msg = new IntegrationMessage();
		// tiek izgūts ziņojums pa vienam
		while ((msg = client.getMessage()) != null) {
			// dvs veic specifiskās pārbaudes
			boolean isValid = ValidateMetadata(msg);
			// Tiek veikta ziņojuma apstiprināšana
			if (isValid) {
				// Ziņojumu akceptē
				client.confirmMessage(msg);
			} else {
				// Ziņojumu noraida
				client.confirmMessage(msg, false, "ERR1", "Error");
			}
		}

	} finally {
		client.close();
	}
}
[bookmark: _Toc201923248][bookmark: _Ref297043693][bookmark: _Ref297043695]Ziņojumu asinhrona apstiprināšana
Par ziņojumu asinhronu apstiprināšanu tiek uzskatīts process, kur ziņojumu izgūšana un apstiprināšana notiek dažādos apstrādes procesos.
Veicot ziņojumu apstiprināšanu asinhroni, ir svarīgi ievērot, ka jābūt aizpildītai ConfirmationInfo struktūrai, ko sinhronas apstiprināšanas gadījumā bibliotēka aizpilda pēc metodes GetMessage izsaukšanas.
.NET bibliotēkas koda piemērs
static void AsyncConfirm()
{
 using (IntegrationClient client = new IntegrationClient())
 {
 String msgXml;
 MessageRecipientConfirmationInfo confirmInfo;
 // Tiek izgūts ziņojums.
 IntegrationMessage msg = client.GetMessage();
 if (msg != null)
 {
 // Ziņojums tiek saglabāts XML veidā.
 msgXml = msg.Xml;
 // Tiek saglabāta ziņojuma apstiprināšanas informācija.
 confirmInfo = msg.ConfirmationInfo;

 // Tiek veidots jauns ziņojuma objekts,
 // tādējādi demonstrējot darbības, kas veicamas asinhronas apstiprināšanas
 // gadījumā. Ziņojuma objekts tiek veidots no saglabātā Ziņojuma XML,
 // tādējādi aizpildot biznesa datus.

 IntegrationMessage message = new IntegrationMessage(msgXml);
 // Ziņijuma objekts tiek papildināts ar apstiprinājuma informāciju.
 message.ConfirmationInfo = confirmInfo;
 client.ConfirmMessage(message);
 }

 }
}
Java bibliotēkas koda piemērs
static void AsyncConfirm() {

	IntegrationClient client = new IntegrationClient();
	String msgXml;
	MessageRecipientConfirmationInfo confirmInfo;
	// Tiek izgūts ziņojums.
	IntegrationMessage msg = client.getMessage();
	if (msg != null) {
		// Ziņojums tiek saglabāts XML veidā.
		msgXml = msg.getXmlString();
		// Tiek saglabāta ziņojuma apstiprināšanas informācija.
		confirmInfo = msg.getConfirmationInfo();

		// Tiek veidots jauns ziņojuma objekts,
		// tādējādi demonstrējot darbības, kas veicamas asinhronas
		// apstiprināšanas
		// gadījumā. Ziņojuma objekts tiek veidots no saglabātā Ziņojuma
		// XML,
		// tādējādi aizpildot biznesa datus.

		IntegrationMessage message = new IntegrationMessage(msgXml);
		// Ziņijuma objekts tiek papildināts ar apstiprinājuma informāciju.
		message.setConfirmationInfo(confirmInfo);
		client.confirmMessage(message);
	}

}
[bookmark: _Toc201923249]Ziņojuma servera apliecinājuma izgūšana
Ziņojuma servera apliecinājuma izgūšana ir process, kas pieejams ziņojuma nosūtītājām, lai izgūtu DIV parakstītu XML objektu ar laika zīmogu. Servera apliecinājumu var izgūt asinhronā procesā pret ziņojuma nosūtīšanas procesu, jeb brīdī, kad DIV ir veicis ziņojuma apstrādi. Koda piemērā ziņojuma sūtīšanas process un apliecinājuma izgūšana ērtākai attēlošanai tiek demonstrēti kā viens process. Veicot integrāciju, vēlams procesus atdalīt, jo lielāku datu apjoma apstrādes gadījumā ziņojuma apstrāde var būt ilgāka par 2 sekundēm.
.NET bibliotēkas koda piemērs
static void GetServerConfirmation()
{
 IntegrationMessage message = new IntegrationMessage();
 // Ziņojuma obligāto datu aizpildīšana
 message.Document.Authors.AddInstitution("My institution name");
 message.Document.Kind.Code = "DOC_EMPTY";
 message.Document.Title = "Document simple title";
 message.From = "_DEFAULT@90000000000";
 message.To = "_PRIVATE@10000000000";
 using (IntegrationClient client = new IntegrationClient())
 {
 // Tiek nosūtīts ziņojums
 string id = client.SendMessage(message);
 // Ziņojuma objekts tiek sagatavos XML veidā priekš saglabāšanas.
 string xml = message.Xml;

 // Tālāk tiek parādīts process, kas pēc notifikācijas saņemšanas
 // ziņojumam pievieno servera apliecinājumu.
 System.Threading.Thread.Sleep(2 * 1000);

 // tiek izgūts notifikāciju saraksts
 var notifications = client.GetNotifications();
 // tiek apstrādātas DIV servera sūtītās notifikācijas
 var msgProccessedNotifications =
 notifications.Where(n => n.NotificationType ==
 NotificationType.MessageProcessed);
 foreach (var notifyData in msgProccessedNotifications)
 {
 // Tiek apstrādātas notifikācijas, kas informē par ziņojumiem,
 // kurus serveris ir apstiprinājis.
 if (notifyData.ServerStatus == MessageStatus.Accepted)
 {
 if (notifyData.MessageId == id)
 {
 // Tiek izgūts Ziņojuma DIV apliecinājums
 // ziņojumam, kas tika nosūtīts
 var serverConfirm =
 client.GetServerConfirmation(notifyData.MessageId);
 // Tiek izveidots ziņojuma objekts no ziņojuma XML dokumenta,
 // kas saglabāts DVS
 IntegrationMessage message2 = new IntegrationMessage(xml);
 // Ziņojuma objektam tiek pievienota servera apstiprinājuma
 // informācija.
 message2.Append(serverConfirm);
 // Ziņojuma objekts ar pievienoto servera apstiprinājumu
 // tiek sagatavots XML veidā.
 string fullXml = message2.Xml;
 // Notifikācijas apstiprināšana
 client.ConfirmNotifications(notifyData);
 }
 }
 }
 }
}
Java bibliotēkas koda piemērs
public void getConfirmation() throws InterruptedException {
	IntegrationMessage message = new IntegrationMessage();
	// Ziņojuma obligāto datu aizpildīšana
	message.getDocument().getAuthors().addInstitution("My Institution");
	message.getDocument().getKind().setCode("DOC_EMPTY");
	message.getDocument().setTitle("My document title");
	message.setFrom("_DEFAULT@90000000000");
	message.setTo("_PRIVATE@10000000000");
	IntegrationClient client = new IntegrationClient();
	// Tiek nosūtīts ziņojums
	String id = client.sendMessage(message);
	// Ziņojuma objekts tiek sagatavos XML veidā priekš saglabāšanas.
	String xml = message.getXmlString();
	// Tālāk tiek parādīts process, kas pēc notifikācijas saņemšanas
	// ziņojumam pievieno servera apliecinājumu.
	Thread.sleep(5 * 1000);
	// tiek izgūts notifikāciju saraksts
	List<Notification> notifications = client.getNotifications();
	List<Notification> toConfirm = new ArrayList<Notification>();
	for (Notification notifyData : notifications) {
		// tiek apstrādātas DIV servera sūtītās notifikācijas
		if (notifyData.getNotificationType() !=
				NotificationType.MessageProcessed)
			continue;
		// Tiek apstrādātas notifikācijas, kas informē par ziņojumiem,
		// kurus serveris ir apstiprinājis.
		if (notifyData.getServerStatus() == MessageStatus.Accepted) {
			if (notifyData.getMessageId().equals(id)) {
				// Tiek izgūts Ziņojuma DIV apliecinājums
				// ziņojumam, kas tika nosūtīts
				MessageServerConfirmation serverConfirm = client
						.getServerConfirmation(notifyData.getMessageId());
				// Tiek izveidots ziņojuma objekts no ziņojuma XML
				// dokumenta,
				// kas saglabāts DVS
				IntegrationMessage message2 =
						new IntegrationMessage(xml);
				// Ziņojuma objektam tiek pievienota servera
				// apstiprinājuma informācija.
				message2.append(serverConfirm);
				// Ziņojuma objekts ar pievienoto servera
				// apstiprinājumu tiek sagatavots XML veidā.
				String fullXml = message2.getXmlString();
				toConfirm.add(notifyData);
				// Notifikācijas apstiprināšana
			}
		}
	}
	if (!toConfirm.isEmpty())
		client.confirmNotifications(toConfirm);
}
[bookmark: _Toc201923250]Ziņojuma informācijas apstrāde
Klientu DVS sistēmas piekļūst saņemtā ziņojuma informācijai, saucot IntegrationMessage klases īpašības un metodes.
[bookmark: _Toc201923251]Apakšadresāciju vienību pārvaldība
Bibliotēka no DVS puses varēs veikt Adresācijas vienību administrēšanu. Apakšadresātus var izveidot tikai zem konta līmeņa adresācijas vienības.
[bookmark: _Toc201923252]Adresācijas vienību izgūšana
Adresācijas vienība tiks reprezentēta ar AddresseeUnit klasi. Klienta DVS sistēmai ir iespējams izgūt katras adresācijas vienības visus atribūtus.
.NET bibliotēkas koda piemērs
 using (IntegrationClient client = new IntegrationClient())
 {
 // Tiek izgūta adresācijas vienība.
 // Kā ieejas dati jānorāda iestādes reģistrācijas numurs un
 // Tehniskā e-adreses daļa pirms @ simbola.
 // Piemērā ilustrēta noklusētās E-adreses izgūšana valsts iestādei
 var adresseUnit = client.GetAddresseeUnit("90000033551", "_DEFAULT");
 }
Java bibliotēkas koda piemērs
		IntegrationClient client = new IntegrationClient();

		// Tiek izgūta adresācijas vienība.
		// Kā ieejas dati jānorāda iestādes reģistrācijas numurs un
		// Tehniskā e-adreses daļa pirms @ simbola.
		// Piemērā ilustrēta noklusētās E-adreses izgūšana valsts iestādei
		AddresseeUnit adresseUnit =
				client.getAddresseeUnit("90000000000", "_DEFAULT");
[bookmark: _Toc201923253]Adresācijas vienību reģistrēšana
Adresācijas vienība tiks reprezentēta ar AddresseeUnit klasi. Klienta DVS sistēmai ir iespējams reģistrēt sava pieslēguma apakšadresācijas vienības, izmantojot CreateAddresseeUnit metodi.
.NET bibliotēkas koda piemērs

 using (IntegrationClient client = new IntegrationClient())
 {
 var adresse = new AddresseeUnit();
 // Adresācijas vienības E-adrese
 adresse.EAddress = "NEWADRR4";
 // Adresāta Reģistrācijas numurs,
 // kuram piesaistīta adresācijas vienība.
 adresse.AddresseeOwnerCode = "90000000000";
 // Sūtīšanai lietojamā e-adrese būs
 // NEWADRR4@90000000000
 //
 // Adresācijas vienības tipa identifikators
 adresse.TypeCode = "TPIS";
 // Laiks, kad adresācijas vienība tiek aktivizēta
 adresse.ActiveFrom = DateTime.Today;
 // Uzstāda vecāka E-adresi.
 // Piemērā E-adrese tiks veidota pirmajā līmenī
 // aiz noklusētās E-adreses.
 adresse.ParentEAddress = "_DEFAULT";
 adresse.Owner = new Owner()
 {
 Title = "Nosaukums"
 };
 client.CreateAddresseeUnit(adresse);
 }
Java bibliotēkas koda piemērs
		IntegrationClient client = new IntegrationClient();
		AddresseeUnit adresse = new AddresseeUnit();
		// Adresācijas vienības E-adrese
		adresse.setEAddress("NEWADRR4");
		// Adresāta Reģistrācijas numurs,
		// kuram piesaistīta adresācijas vienība.
		adresse.setAddresseeOwnerCode("90000000000");
		// Sūtīšanai lietojamā e-adrese būs
		// NEWADRR4@90000000000
		//
		// Adresācijas vienības tipa identifikators
		adresse.setTypeCode("TPIS");
		// Uzstāda vecāka E-adresi.
		// Piemērā E-adrese tiks veidota pirmajā līmenī
		// aiz noklusētās E-adreses.
		adresse.setParentEAddress("_DEFAULT");
		// Laiks, kad adresācijas vienība tiek aktivizēta
		Calendar c1 = Calendar.getInstance();
		adresse.setActiveFrom(c1.getTime());
		// Uzstāda Adresācijas vienības īpašnieka struktūru
		Owner owner = new Owner();
		// Uzstāda nosaukumu
		owner.setTitle("Nosaukums");
		adresse.setOwner(owner);
		// Adresācijas vienības izveidošana
		client.createAddresseeUnit(adresse);
[bookmark: _Toc201923254]Adresācijas vienību atjaunināšana
Adresācijas vienības atribūtu rediģēšanai tiek izmantota UpdateAddresseeUnit metode.
.NET bibliotēkas koda piemērs
 using (IntegrationClient client = new IntegrationClient())
 {
 // Tiek izgūta adresācijas vienība.
 var adresseUnit = client.GetAddresseeUnit("90000000000", "NEWADRR4");

 //##

 // Ja nepieciešams atjaunot ieraksta atribūtus, izņemot Eadresi:
 // Uzstādam jaunu nosaukumu.
 adresseUnit.Owner.Title = "Nosaukums 23";
 // Veicam ieraksta atjaunināšanau
 client.UpdateAddresseeUnit(adresseUnit);

 //##

 //Ja nepieciešams mainīt arī EAdress lauka vērtību,
 // tad:
 // uzstādam jauno E-adreses vērtību līdz @ simbolam.
 adresseUnit.EAddress = "NEWADRR5";
 // Uzstādam jaunu nosaukumu.
 adresseUnit.Owner.Title = "Nosaukums 23";
 // Veicam ieraksta atjaunināšanu,
 // padodot ieraksta E-adresi, kuru nepieciešams atjaunot.
 client.UpdateAddresseeUnit(adresseUnit, "NEWADRR4");
 }
Java bibliotēkas koda piemērs
		IntegrationClient client = new IntegrationClient();
		// Tiek izgūta adresācijas vienība.
		AddresseeUnit adresseUnit =
				client.getAddresseeUnit("90000000000", "NEWADRR4");

		// ##

		// Ja nepieciešams atjaunot ieraksta atribūtus, izņemot Eadresi:
		// Uzstādam jaunu nosaukumu.
		Owner owner = new Owner();
		owner.setTitle("Nosaukums 23");
		adresseUnit.setOwner(owner);
		// Veicam ieraksta atjaunināšanau
		client.updateAddresseeUnit(adresseUnit);

		// ##

		// Ja nepieciešams mainīt arī EAdress lauka vērtību,
		// tad:
		// uzstādam jauno E-adreses vērtību līdz @ simbolam.
		adresseUnit.setEAddress("NEWADRR5");
		// Uzstādam jaunu nosaukumu.
		owner = new Owner();
		owner.setTitle("Nosaukums 23");
		adresseUnit.setOwner(owner);
		// Veicam ieraksta atjaunināšanu,
		// padodot ieraksta E-adresi, kuru nepieciešams atjaunot.
		client.updateAddresseeUnit(adresseUnit, "NEWADRR4");
[bookmark: _Toc201923255]Adresācijas vienību dzēšana
Adresācijas vienību ir iespējams atzīmēt kā nodzēstu, saucot DeleteAddresseeUnit metodi.
.NET bibliotēkas koda piemērs
 using (IntegrationClient client = new IntegrationClient())
 {
 // Tiek izgūta adresācijas vienība, kuru nepieciešams dzēst
 var adresseUnit = client.GetAddresseeUnit("90000000000", "NEWADRR4");
 // Adresācijas vienības dzēšana
 client.DeleteAddresseeUnit(adresseUnit);
 }
Java bibliotēkas koda piemērs
		IntegrationClient client = new IntegrationClient();
		// Tiek izgūta adresācijas vienība, kuru nepieciešams dzēst
		AddresseeUnit adresseUnit = client.getAddresseeUnit("90000000000", "NEWADRR4");
		// Adresācijas vienības dzēšana
		client.deleteAddresseeUnit(adresseUnit);
[bookmark: _Toc201923256]Adresācijas vienību meklēšana
Klienta DVS sistēmai būs iespēja meklēt DIV adresātu katalogā, saucot SearchAddresseeUnits metodi.
.NET bibliotēkas koda piemērs
 using (IntegrationClient client = new IntegrationClient())
 {
 bool hasMoreResults = false;
 var Criteria = new AddresseeUnitSearchCriteria();
 // Meklēšanas kritēriju uzstādīšana
 // Iestādes/Juridiskas personas reģistrācijas nummurs
 Criteria.AddresseeOwnerCode = "0000000000";
 // Papildus atlases kritēriju uzstādīšana
 Criteria.EAddress = "KANCELEJA";
 // Adresācijas vienību meklēšana
 List<AddresseeUnit> unitList =
 client.SearchAddresseeUnits(Criteria, out hasMoreResults);
 }
Java bibliotēkas koda piemērs
		IntegrationClient client = new IntegrationClient();
		try {
			AddresseeUnitSearchCriteria myCriteria =
					new AddresseeUnitSearchCriteria();
			// Meklēšanas kritēriju uzstādīšana
			// Iestādes/Juridiskas personas reģistrācijas nummurs
			myCriteria.setAddresseeOwnerCode("000000000000");
			// Papildus atribūtu uzstādīšana
			myCriteria.setEAddress("Eadrese");
			// Adresācijas vienību meklēšana
			ListToContinue<AddresseeUnit> unitList =
					client.searchAddresseeUnits(myCriteria);
			// Parametrs, kas norāda vai tika atgriezti visi rezultāti
			unitList.isMoreResults();

		} finally {
			client.close();
		}		
[bookmark: _Toc201923257]Adresātu sinhronizācija
Klienta DVS sistēmai būs iespēja veikt sinhronu adresāta kataloga ierakstu sinhronizāciju. Lai veiktu sinhronizāciju, ir pieejamas sekojošas bibliotēkas metodes:
· GetInitialAddresseeRecords;
· GetChangedAddresseeRecords;
· GetChangedAddresseeRecordsAsyncStart;
· GetChangedAddresseeRecordsAsyncResult;
· GetChangedAddresseeRecordsAsyncConfirm;
Sinhronizācijas rezultātā tiek atgriests saraksts ar adresāta ierakstiem –“AddresseeRecord”. Klase AddresseeRecord satur šādus atribūtus:
DateTime? ActiveFrom – ieraksta izveides/aktivizēšanas laiks. Var būt nākotnē.
Classifier AddreseeRecordType – Adresāta ierakstu tips (piemēram, Struktūrvienība, Privātpersona, kas pilda valsts funkciju).
Classifier AddreseeType – Adresāta tips (piemēram, Valsts iestāde, Reģistros reģistrēta iestāde).
DateTime? BlockedFrom – ieraksta deaktivizēšana laiks. Var būt nākotnē.
string Code – Adresātu Kods (Reģistrācijas numurs, personas kods).
string EAddress – Tehniskā Eadrese. Sastāv no eadreses un pazīmes/iestādes norādītā elementa (pazīme@eadrese).
string FirstName – Personas vārds.
string LastName – Personas uzvārds.
long Id – Ieraksta unikālais identifikators.
bool IsDeleted – Pazīme vai ieraksts ir dzēsts.
string Name – Adresāta nosaukums.
long? ParentId – Vecāka ieraksta ID. (Koka struktūras veidošanai).
long Version – Versijas identifikators.
Asinhroni izgūstāmie dati tiek sagatavoti kā JSON datne atbilstoši AddreseeRecord klasei.

[bookmark: _Ref8735931][bookmark: _Toc201923258]Adresātu sākotnējā sinhronizācija
Metode GetInitialAddresseeRecords nodrošina visu kataloga adresātu sinhronizāciju līdz konkrētās dienas izmaiņām. Nenorādot ieejas parametrus, lapošanas mehānismu nodrošina pati bibliotēka.
.NET bibliotēkas koda piemērs
 long MaxVersion = 0;

 using (IntegrationClient client = new IntegrationClient())
 {
 string token = null;

 do
 {
 var list = client.GetInitialAddresseeRecords(token, out token);
 if (list != null)
 {
 // Apstrādā katru saņemto adresātu
 foreach (var record in list)
 {

 // Ierakstu versijas identifikatori tiek atgriezti secīgi.
 // Tomēr tiek rekomendēts pārbaudīt katru versijas identifikatoru.
 // Maksimālais versijas identifikators ir nepieciešams
 // izmaiņu izgūšanai.
 if (record.Version > MaxVersion)
 {
 // Tiek uzstādīts maksimālās versijas identifikators
 MaxVersion = record.Version;
 }
 // Tiek pārbaudīts vai E-adrese ir dzēsta
 // (vairāk aktuāls apakšadresācijas vienībām)
 if (record.IsDeleted != true)
 {
 // Veic atribūtu apstrādi pēc DVS biznesa procesa
 }
 else
 {
 // Dzēst e-adresi no DVS sistēmas;
 }
 }
 }

 }
 while (token != null);
 // DVS saglabā Versijas numuru pēc kura nākamajā reizē veikt sinhronizāciju.
 var MaxVersionSave = MaxVersion;
 }
JAVA bibliotēkas koda piemērs
 		long MaxVersion = 0;
		IntegrationClient client = new IntegrationClient();
		String token = null;
		do {
			ListWithContinuationToken<AddresseeRecord> list
					= client.getInitialAddresseeRecords(token);
			if (list != null) {
				// Apstrādā katru saņemto adresātu
				for (AddresseeRecord record : list) {
					// Ierakstu versijas identifikatori tiek atgriezti secīgi.
					// Tomēr tiek rekomendēts pārbaudīt katru versijas
					// identifikatoru.
					// Maksimālais versijas identifikators ir nepieciešams
					// izmaiņu izgūšanai.
					if (record.getVersion() > MaxVersion) {
						// Tiek uzstādīts maksimālās versijas identifikators
						MaxVersion = record.getVersion();
					}
					// Tiek pārbaudīts vai E-adrese ir dzēsta
					// (vairāk aktuāls apakšadresācijas vienībām)
					if (record.isDeleted() != true) {
						// Veic atribūtu apstrādi pēc DVS biznesa procesa
					} else {
						// Dzēst e-adresi no DVS sistēmas;
					}
				}
			}
			token = list.getContinuationToken();
		} while (token != null);
		// DVS saglabā Versijas numuru pēc kura nākamajā reizē veikt
		// sinhronizāciju.
		long MaxVersionSave = MaxVersion;
[bookmark: _Ref8735942][bookmark: _Toc201923259]Adresātu aktuālo izmaiņu sinhronizācija
Datu izmaiņas iespējams izgūt sinhroni, kā arī asinhroni.
Sinhrono izgūšanu nodrošina metode GetChangedAddresseeRecords, bet asinhrono metodes GetChangedAddresseeRecordsAsyncStart, GetChangedAddresseeRecordsAsyncResult, GetChangedAddresseeRecordsAsyncConfirm. Datu kopa (apjoms) abiem izmaiņu izgūšanas veidiem ir identiska – atšķiras tikai datu formāts, kā arī metožu izmantošanas ierobežojumi.
Svarīgi
Sinhronā sinhronizācija tiek ierobežota ar laika periodu, cik bieži sinhronizāciju var veikt, piemēram, reizi 12 stundās, bet toties tiek nodrošināts, ka atbilde tiks sniegta maksimāli ātri (webservisa izsaukuma laikā).
Asinhrono sinhronizāciju var lietot neierobežoti, bet atbilde tiks sniegta ilgākā laika periodā, atkarībā no pieprasījumu rindas.
Sinhrona adresātu aktuālo izmaiņu sinhronizācija
Metode GetChangedAddresseeRecords nodrošina kataloga izmaiņu atgriešanu no konkrētas versijās līdz pēdējām izmaiņām (metode atgriež izmaiņas par konfigurācijā norādīto laika periodu, piemēram pa pēdējo nedēļu) – ja tiks pieprasītas izmaiņas par vecāku periodu, tiks saņemta kļūda un būs jāveic atkārtoti pilna sinhronizācija.
.NET bibliotēkas koda piemērs
 using (IntegrationClient client = new IntegrationClient())
 {
 // Pazīme vai eksistē meklēšanas rezultāti, kuri netika atgriezti.
 var hasMoreRecords = true;
 while (hasMoreRecords)
 {
 // Veicot sinhronizāciju jānorāda maksimālais versijas
 // numurs no jau nosinhronizētajiem ierakstiem.
 var data = client.GetChangedAddresseeRecords(MaxVersion, out hasMoreRecords);

 // Tiek izgūts saraksts ar adresātu identifikatoriem, kuriem ir izmaiņas
 // pret sinhronizējamo versiju.

 if (data != null)
 {
 // Apstrādā katru saņemto adresātu
 foreach (var record in data)
 {

 // Ierakstu versijas identifikatori tiek atgriezti secīgi.
 // Tomēr tiek rekomendēts pārbaudīt katru versijas identifikatoru.
 // Maksimālais versijas identifikators ir nepieciešams
 // izmaiņu izgūšanai.
 if (record.Version > MaxVersion)
 {
 // Tiek uzstādīts maksimālās versijas identifikators
 MaxVersion = record.Version;
 }
 // Tiek pārbaudīts vai E-adrese ir dzēsta
 // (vairāk aktuāls apakšadresācijas vienībām)
 if (record.IsDeleted != true)
 {
 // Veic atribūtu apstrādi pēc DVS biznesa procesa
 }
 else
 {
 // Dzēst e-adresi no DVS sistēmas;
 }
 }
 }
 }
 }
 // DVS saglabā Versijas numuru pēc kura nākamajā reizē veikt sinhronizāciju.
 var MaxVersionSave = MaxVersion;
JAVA bibliotēkas koda piemērs
 		long MaxVersion = 58000;
		IntegrationClient client = new IntegrationClient();
		Boolean hasMoreRecords = true;
		while (hasMoreRecords) {
			// Veicot sinhronizāciju jānorāda maksimālais versijas
			// numurs no jau nosinhronizētajiem ierakstiem.
			ListToContinue<AddresseeRecord> data
				= client.getChangedAddresseeRecords(MaxVersion);

			// Tiek izgūts saraksts ar adresātu identifikatoriem, kuriem ir
			// izmaiņas
			// pret sinhronizējamo versiju.

			if (data != null) {
				// Apstrādā katru saņemto adresātu
				for (AddresseeRecord record : data) {
					{

						// Ierakstu versijas identifikatori tiek atgriezti
						// secīgi.
						// Tomēr tiek rekomendēts pārbaudīt katru versijas
						// identifikatoru.
						// Maksimālais versijas identifikators ir nepieciešams
						// izmaiņu izgūšanai.
						if (record.getVersion() > MaxVersion) {
							// Tiek uzstādīts maksimālās versijas identifikators
							MaxVersion = record.getVersion();
						}
						// Tiek pārbaudīts vai E-adrese ir dzēsta
						// (vairāk aktuāls apakšadresācijas vienībām)
						if (record.isDeleted() != true) {
							// Veic atribūtu apstrādi pēc DVS biznesa procesa
						} else {
							// Dzēst e-adresi no DVS sistēmas;
						}
					}
				}
			}
			hasMoreRecords=data.isMoreResults();
		}
		// DVS saglabā Versijas numuru pēc kura nākamajā reizē veikt
		// sinhronizāciju.
		Long MaxVersionSave = MaxVersion;
Asinhronā adresātu sinhronizācija
Klienta DVS sistēmai būs iespēja veikt asinhronu adresāta kataloga ierakstu sinhronizāciju. Lai veiktu sinhronizāciju, ir pieejamas sekojošas bibliotēkas metodes:
Adresātu asinhronās sinhronizācijas uzsākšana
Metode GetChangedAddresseeRecordsAsyncStart nodrošina kataloga izmaiņu izgūšanas uzsākšanu no konkrētas versijās līdz pēdējām izmaiņām. Pēc metodes izsaukšanas asinhroni tiek uzsākts izmaiņu sagatavošanas process.
.NET bibliotēkas koda piemērs
 using (IntegrationClient client = new IntegrationClient())
 {
 long MaxVersion = x;
 // Veicot sinhronizāciju jānorāda maksimālais versijas
 // numurs no jau nosinhronizētajiem ierakstiem. Metode iniciē
 // sinhronizācijas uzsākšanu.
 string RequestId = client.GetChangedAddresseeRecordsAsyncStart(MaxVersion);
 // Metode atgriež pieprasījuma identifikatoru,
 //ko tālāk jālieto datu izgūšanai.
 return RequestId;
 }
JAVA bibliotēkas koda piemērs
 IntegrationClient client = new IntegrationClient();

long MaxVersion = 58000;
 // Veicot sinhronizāciju jānorāda maksimālais versijas
 // numurs no jau nosinhronizētajiem ierakstiem. Metode iniciē
 // sinhronizācijas uzsākšanu.
 String RequestId = client.getChangedAddresseeRecordsAsyncStart(MaxVersion);
 // Metode atgriež pieprasījuma identifikatoru,
 //ko tālāk jālieto datu izgūšanai.
 return RequestId;

Adresātu asinhronās sinhronizācijas datu izgūšana
Metode GetChangedAddresseeRecordsAsyncResult nodrošina asinhroni sagatavoto kataloga izmaiņu izgūšanu.
.NET bibliotēkas koda piemērs
 using (IntegrationClient client = new IntegrationClient())
 {
 // Pēc pieprasījuma identifikatora tiek izgūta informācija, kur
 // piekļūt sinhronizācijas datiem
 var data = client.GetChangedAddresseeRecordsAsyncResult(RequestId);
 var ftpfile = data.FtpFileName;

 // Izmantojot ftpfile jāpieslēdzas ar ftp klientu ftp serverim
 // un jāizgūst datne, kuru var apstrādāt atbilstoši nepieciešamajam.
 }
JAVA bibliotēkas koda piemērs
 IntegrationClient client = new IntegrationClient();
 // Pēc pieprasijuma identifikatora tiek izgūta informācija, kur
 // piekļūt sinhronizācijas datiem
 ChangedAddresseeRecordsAsyncResult data =
 		client.getChangedAddresseeRecordsAsyncResult(RequestId);
 String ftpfile = data.getFtpFileName();
 // Izmantojot ftpfile jāpieslēdzas ar ftp klientu ftp serverim
 // un jāizgūst datne, kuru var apstrādāt atbilstoši nepieciešamajam.
Adresātu asinhronās sinhronizācijas pabeigšana
Metode GetChangedAddresseeRecordsAsyncConfirm nodrošina sinhronizācijas pabeigšanu – apstiprinājumu, ka dati ir saņemti.
.NET bibliotēkas koda piemērs
 using (IntegrationClient client = new IntegrationClient())
 {
 // Tiek apstiprināta datu saņemšana.
 client.GetChangedAddresseeRecordsAsyncConfirm(RequestId);

 }
JAVA bibliotēkas koda piemērs
 IntegrationClient client = new IntegrationClient();
 // Tiek apstiprināta datu saņemšana.
 client.getChangedAddresseeRecordsAsyncConfirm(RequestId);
[bookmark: _Toc201923260]E-adreses pārbaude
Klienta DVS sistēmai būs iespēja veikt E-adreses pārbaudi. Pārbaudi var veikt sinhroni un asinhroni. Sinhronai pārbaudei pieejama metode “ValidateEAddress”. Asinhronai pārbaudei pieejamas metodes:
· ValidateAddresseesAsyncStart
· ValidateAddresseesAsyncResult
· ValidateAddresseesAsyncConfirm
[bookmark: _Toc201923261]Sinhrona E-adreses pārbaude
Veicot e-adreses validāciju tiek atgriezts e-adrešu masīvs ar šādiem atribūtiem (detalizētāku informāciju un tipu aprakstus skatīties saistītajā dokumentā [4] :
	Nosaukums
	Tips
	Apraksts

	EAddress
	string
	E-adrese.

	Owner
	Owner
	E-adreses īpašnieks.

	IsValid
	boolean
	Pazīme, vai ir derīgs privātais konts.

	DeactivationDateTime
	datetime
	Deaktivizācijas datumlaiks.

Atribūts DeactivationDateTime tiek aizpildīts tikai tādos gadījumos, kad e-adrese nav derīga, bet tā nav anulēta (kā arī ir bijusi aktīva). Kādu iemeslu pēc E-adrese īslaicīgi ir deaktivizēta. Lauks satur datumlaika vērtību, no kura brīža e-adrese ir deaktivizēta.
.NET bibliotēkas koda piemērs
 using (IntegrationClient client = new IntegrationClient())
 {
		// Jānorāda E-adrese, kā norādīts likumā (personas kods,reģistrācijas numurs)
 IEnumerable<string> eAddresses = new string[] {"12345678902","12345678901" };

 // Pārbauda eadreses
 var result = client.ValidateEAddress(eAddresses, AddreesseePersonType.NaturalPerson);
 foreach (var record in result)
 {
 if (record.IsValid)
 {
 // Eadrese ir Aktīva
 }
 else
 {
 // Eadrese nav derīga
 }
 }
 }
JAVA bibliotēkas koda piemērs
	 IntegrationClient client = new IntegrationClient();
 // Jānorāda E-adrese, kā norādīts likumā
 //(personas kods,reģistrācijas numurs)
 List<String> eAddresses = new ArrayList<String>();
 eAddresses.add("12345678902");
 eAddresses.add("12345678901");

 // Pārbauda eadreses
 List<EAddressValidationResult> result =
 		client.validateEAddress(eAddresses,
 				AddreesseePersonType.NaturalPerson);
 for (EAddressValidationResult record : result)
 {
 if (record.getIsValid())
 {
 // Eadrese ir Aktīva
 }
 else
 {
 // Eadrese nav derīga
 }
 }
[bookmark: _Toc201923262]Asinhrona E-adreses pārbaude
.NET bibliotēkas koda piemērs

 using (IntegrationClient client = new IntegrationClient())
 {
 // Jānorāda E-adrese, kā norādīts likumā (personas kods,reģistrācijas numurs)
 IEnumerable<string> eAddresses = new string[] { "30128211323", "12345678901" };

 // Uzsāk eadreses validāciju.
 // Sistēmas pusē jasaglabā pieprasījuma identifikators.
 var requestId =
 client.ValidateAddresseesAsyncStart(eAddresses);
 // Saņem sarakstu ar derīgām e-adresēm.
 // Datu saņemšana jāveic ar saglabāto pieprasījuma identifikatoru.
 // Dati tiks atgriezti, kad sistēma rindas kārtībā tos būs sagatavojusi
 var result = client.ValidateAddresseesAsyncResult(requestId);
 // foreach (var record in result)
 {
 // Apstrādā derīgās eadrese
 }

 // Apstiprina rezultātu saņemšanu.
 client.ValidateAddresseesAsyncConfirm(requestId);
 }
JAVA bibliotēkas koda piemērs

	 IntegrationClient client = new IntegrationClient();
 // Jānorāda E-adrese, kā norādīts likumā
 //(personas kods,reģistrācijas numurs)

 List<String> eAddresses = new ArrayList<String>();
 eAddresses.add("12345678902");
 eAddresses.add("12345678901");

 // Uzsāk eadreses validāciju.
 // Sistēmas pusē jasaglabā pieprasījuma identifikators.
 String requestId =
 client.validateAddresseesAsyncStart(eAddresses);
 // Saņem sarakstu ar derīgām e-adresēm.
 // Datu saņemšana jāveic ar saglabāto pieprasījuma identifikatoru.
 // Dati tiks atgriezti, kad sistēma rindas kārtībā tos būs sagatavojusi
 List<String> result = client.validateAddresseesAsyncResult(requestId);

 for (String record : result)
 {
 // Apstrādā derīgās eadrese
 }
 // Apstiprina rezultātu saņemšanu.
 client.validateAddresseesAsyncConfirm(requestId);
[bookmark: _Ref8735967][bookmark: _Toc201923263]E-adreses statusa izgūšana
Latvija.lv sistēmai būs iespēja veikt asinhronu E-adreses statusu izgūšanu. Asinhronai pārbaudei pieejamas šādas metodes:
· GetAccountStatusHistoryAsyncStart
· GetAccountStatusHistoryAsyncResult
· GetAccountStatusHistoryAsyncConfirm
[bookmark: _Toc201923264].NET bibliotēkas koda piemērs
 using (IntegrationClient client = new IntegrationClient())
 {
 long version = 1;
 long iter = 1;
 bool go = true;
 while (go)
 {
 go = false;
 var request = client.GetAccountStatusHistoryAsyncStart(version);
 var data = client.GetAccountStatusHistoryAsyncResult(request);
 if (data != null)
 {
 foreach (var record in data.Addressees) {
 if (version < record.Version)
 {
 version = record.Version;
 }
 }
 go = data.HasMoreData;
 }
 client.GetAccountStatusHistoryAsyncConfirm(request);
 }

 }

 Svarīgi! Pieprasījumu var apstiprināt (GetAccountStatusHistoryAsyncConfirm) tikai tad, ja ir izgūti veiksmīgi dati. Problēmu gadījumā jāmēģina atkārtoti izgūt dati.
[bookmark: _Toc201923265]Kataloga e-adrešu aktualizēšana
Metodes pieejamas, lai veiktu Eadrešu kataloga aktualizēšanu. Metodes pieejamas ārējiem datu reģistriem. Datu aktualizēšani pieejamas šādas metodes:
· CreateInstitution – Valsts iestāžu izveidošanai.
· ActivatePersonAccount – Reģistros reģistrētu un fizisku personu izveidošanai.
· AddresseeStatusUpdateAsyncStart – Masveida statusa atjaunošanai.
· AddresseeOwnerUpdateAsyncStart – Masveida īpašnieku datu atjaunošanai.
· GetResultJournal – Masveida operāciju rezultātu izgūšanai.
Visas metodes pieejamas tikai .NET bibliotēkā.
[bookmark: _Toc201923266]Valsts iestādes izveidošana
[bookmark: _Toc201923267].NET bibliotēkas koda piemērs
 using (IntegrationClient client = new IntegrationClient())
 {

 // Izveido iestādes ierakstu, kas jāreģistrē
 var OwnerRecord = new Owner();
 OwnerRecord.Code = "XXXXXXXXXXX";
 OwnerRecord.Title = "Iestāde 1";
 // Izveido Valsts iestādi
 client.CreateInstitution("TPI", OwnerRecord);
 }
[bookmark: _Toc201923268]JAVA bibliotēkas koda piemērs
		IntegrationClient client = new IntegrationClient();

		Owner owner = new Owner();
		// Uzstāda nosaukumu
		owner.setTitle("Iestāde 1");
		// Uzstāda reģistrācijas numuru
		owner.setCode("XXXXXXXXXXXXX");
		// Izveido Valsts iestādi
		client.createInstitution("TPI", owner);
[bookmark: _Toc201923269]Reģistros reģistrētu un fizisku personu izveidošana
[bookmark: _Toc201923270].NET bibliotēkas koda piemērs
 using (IntegrationClient client = new IntegrationClient())
 {

 // Izveido iestādes ierakstu, kas jāreģistrē
 var OwnerRecord = new Owner();
 OwnerRecord.Code = "XXXXXXXXXX";
 OwnerRecord.FirstName = "FirstName";
 OwnerRecord.Surname = "Surname";
 // Izveido Privātpersonu
 client.ActivatePersonAccount(
 AddreesseePersonType.NaturalPerson, OwnerRecord);
 }

 using (IntegrationClient client = new IntegrationClient())
 {

 // Izveido iestādes ierakstu, kas jāreģistrē
 var OwnerRecord = new Owner();
 OwnerRecord.Code = "XXXXXXXXXXX";
 OwnerRecord.Title = "SIA QWERER";
 // Izveido Reģistros reģistrētu personu
 client.ActivatePersonAccount(
 AddreesseePersonType.RegisteredEntity, OwnerRecord);
 }
[bookmark: _Toc201923271]JAVA bibliotēkas koda piemērs
		IntegrationClient client = new IntegrationClient();

		// Izveido iestādes ierakstu, kas jāreģistrē
		Owner OwnerRecord = new Owner();
		// Uzstāda personas kodu
		OwnerRecord.setCode("XXXXXXXXXX");
		OwnerRecord.setFirstName("FirstName");
		OwnerRecord.setSurname("Surname");
		// Izveido Privātpersonu
		client.activatePersonAccount(
				AddreesseePersonType.NaturalPerson, OwnerRecord);

		// Izveido reģistros reģistrētas personas ierakstu
		Owner OwnerRecord2 = new Owner();
		// Reģistrācijas numurs
		OwnerRecord2.setCode("99999999999");
		OwnerRecord2.setTitle("SIA QWERER");
		// Izveido Reģistros reģistrētu personu
		client.activatePersonAccount(
				AddreesseePersonType.RegisteredEntity, OwnerRecord2);
[bookmark: _Toc201923272]Valsts iestādes vai reģistros reģistrētas personas e-adreses deanulēšana
[bookmark: _Toc201923273].NET bibliotēkas koda piemērs
 using (IntegrationClient client = new IntegrationClient())
 {
 // Deanullē eadresi
 client.DeanullAddressee(DeanullAddresseeType.RegisteredEntity, "80000000088");
 }
[bookmark: _Toc201923274]JAVA bibliotēkas koda piemērs
		IntegrationClient client = new IntegrationClient();
		// Deanulē Valsts iestādi
		client.deanullAddressee(DeanullAddresseeType.Institution, "80000000088");
[bookmark: _Toc201923275]Masveida statusa atjaunošana
[bookmark: _Toc201923276].NET bibliotēkas koda piemērs
 using (IntegrationClient client = new IntegrationClient())
 {

 // Uzsāk datu masveida statusa atjaunošanas procesu.
 // Atbildē tiek saņemts pieprasījuma identifikators
 IEnumerable<String> eAddresses =
 new string[] { "40003249152", "40000000003" };
 var requestId = client.AddresseeStatusUpdateAsyncStart(
 AddresseeStatusUpdatePersonType.Institution,
 AddresseeStatusUpdateStatusType.Annulled,
 eAddresses);

 // Tiek izsaukta rezultātu izgūšanas metode.
 // Datu apstrāde ir asinhrons process un var prasīt ilgu laiku.
 var response = client.GetResultJournal(requestId);

 }
[bookmark: _Toc201923277]JAVA bibliotēkas koda piemērs
		IntegrationClient client = new IntegrationClient();

		// Uzsāk datu masveida statusa atjaunošanas procesu.
		// Atbildē tiek saņemts pieprasījuma identifikators
		List<String> eAddresses = new ArrayList<String>();
		eAddresses.add("40003249152");
		eAddresses.add("40000000003");

		String requestId = client.addresseeStatusUpdateAsyncStart(
				AddresseeStatusUpdatePersonType.Institution,
				AddresseeStatusUpdateStatusType.Annulled, eAddresses);

		// Tiek izsaukta rezultātu izgūšanas metode.
		// Datu apstrāde ir asinhrons process un var prasīt ilgu laiku.
		ResultJournalResult response = client.getResultJournal(requestId);
[bookmark: _Toc201923278]Masveida īpašieku datu atjaunošana
[bookmark: _Toc201923279].NET bibliotēkas koda piemērs
 using (IntegrationClient client = new IntegrationClient())
 {
 List<AddresseeOwnerUpdateRecord> instOwners = new List<AddresseeOwnerUpdateRecord>();
 // Izveido pirmo atjaunojamo ierakstu
 var OwnerRecord = new AddresseeOwnerUpdateRecord();
 OwnerRecord.IdentificationNumber = "400000000001";
 OwnerRecord.Title = "AAA, SIA";
 instOwners.Add(OwnerRecord);

 // Izveido otro atjaunojamo ierakstu
 var OwnerRecord2 = new AddresseeOwnerUpdateRecord();
 OwnerRecord2.IdentificationNumber = "40000000002";
 OwnerRecord2.Title = "DEPARTMENT";
 instOwners.Add(OwnerRecord2);

 // Izveido X atjaunojamo ierakstu
 var OwnerRecordx = new AddresseeOwnerUpdateRecord();
 OwnerRecordx.IdentificationNumber = "40000000XXX";
 OwnerRecordx.Title = "DEPARTMENT2";
 instOwners.Add(OwnerRecordx);

 // Uzsāk datu masveida atjaunošanas procesu.
 // Atbildē tiek saņemts pieprasījuma identifikators
 var requestId =
 client.AddresseeOwnerUpdateAsyncStart(
 AddresseeOwnerUpdatePersonType.RegisteredEntity,
 instOwners);

 // Tiek izsaukta rezultātu izgūšanas metode.
 // Datu apstrāde ir asinhrons process un var prasīt ilgu laiku.

 var response = client.GetResultJournal(requestId);
 }
[bookmark: _Toc201923280]JAVA bibliotēkas koda piemērs
		IntegrationClient client = new IntegrationClient();

		List<AddresseeOwnerUpdateRecord> instOwners = new ArrayList<AddresseeOwnerUpdateRecord>();
		// Izveido pirmo atjaunojamo ierakstu
		AddresseeOwnerUpdateRecord OwnerRecord = new AddresseeOwnerUpdateRecord();
		OwnerRecord.setIdentificationNumber("44403249152");
		OwnerRecord.setTitle("AAA, SIA");
		instOwners.add(OwnerRecord);

		// Izveido otro atjaunojamo ierakstu
		AddresseeOwnerUpdateRecord OwnerRecord2 = new AddresseeOwnerUpdateRecord();
		OwnerRecord2.setIdentificationNumber("40000000003");
		OwnerRecord2.setTitle("DEPARTMENT");
		instOwners.add(OwnerRecord2);

		// Izveido X atjaunojamo ierakstu
		AddresseeOwnerUpdateRecord OwnerRecordx = new AddresseeOwnerUpdateRecord();
		OwnerRecordx.setIdentificationNumber("40000000XXX");
		OwnerRecordx.setTitle("DEPARTMENT2");
		instOwners.add(OwnerRecordx);

		// Uzsāk datu masveida atjaunošanas procesu.
		// Atbildē tiek saņemts pieprasījuma identifikators
		 String requestId =
		 client.addresseeOwnerUpdateAsyncStart(
				 AddresseeOwnerUpdatePersonType.RegisteredEntity,
				 instOwners);

		// Tiek izsaukta rezultātu izgūšanas metode.
		// Datu apstrāde ir asinhrons process un var prasīt ilgu laiku.

		ResultJournalResult response = client.getResultJournal(requestId);
[bookmark: _Toc201923281]Masveida operāciju rezultātu izgūšana
[bookmark: _Toc201923282].NET bibliotēkas koda piemērs
 // Lai izgūtu Masveida operāciju rezultātus kā ievadlauks ir jāpadod pieprasījuma
// identifikatos, kas tika lietots veidojot pieprasījumu.

 var response = client.GetResultJournal(requestId);
[bookmark: _Toc201923283]JAVA bibliotēkas koda piemērs
		// Lai izgūtu Masveida operāciju rezultātus kā ievadlauks ir jāpadod pieprasījuma
		// identifikatos, kas tika lietots veidojot pieprasījumu.

		ResultJournalResult response = client.getResultJournal(requestId);

Masveida operācijām par katru ierakstu var tikt atgriezta šāda statusa informācija:
· 'Not_Found' – ieraksts nav atrasts;
· 'Not_Unique' – pieprasījuma ieraksts nav unikāls;
· 'Invalid_Attributes' – ievadparametri neatbilsts specifikācijai;
· 'Invalid_Institution_Type' – nederīga tipa vērtība;
· 'Invalid_Type_Change' – nepieļaujama statusa maiņa;
· 'Invalid_Status_Code' – nederīga statusa koda vērtība;
· 'Status_Already_Set' – Ierakstam jau bija uzstādāmais statuss;
· 'Addressee_Is_Anulled' – Eadrese ir anulēta;
· 'Record_Processing_Error' – Apstrādes kļūda;

[bookmark: _Toc201923284]Masveida operāciju aktīvā pieprasījuma identifikatora izgūšana
Pēdējo pieprasījuma identifikatoru var izgūt 3 pieprasījuma veidiem:
· Pilnajai adresātu sinhronizācijai (skatīties šī dokumenta nodaļu - 4.5.1) – ievadparametrs = INITIALADDRESSEERECORDS;
· Adresātu izmaiņu sinhronizācijai (skatīties šī dokumenta nodaļu - 4.5.2) – ievadparametrs = CHANGEDADDRESSEERECORDS
· Adresātu statusu vēsture (skatīties šī dokumenta nodaļu - 4.7) – ievadparametrs = ACCOUNTSTATUSHISTORY;
[bookmark: _Toc201923285].NET bibliotēkas koda piemērs
 // Izgūt masveida operāciju aktīvo pieprasījuma identifikatoru
var request = client.GetActiveBulkReferenceNumber("ACCOUNTSTATUSHISTORY");

[bookmark: _Toc201923286]Bibliotēkas biznesa likumu paziņojumi
	Kods
	Tips
	Teksts latviešu valodā

	BIB.001
	string
	<Standarta .net/java uzstādīts kļūdas teksts>

	BIB.002
	string
	Konfigurācija '{0}' nav atrasta.

	BIB.003
	string
	Servisa konfigurētā adrese '{0}' nav pareiza absolūta URI adrese.

	BIB.004
	string
	Servisa konfigurētās adreses '{0}' shēma nav pareiza. Jābūt https.

	BIB.005
	string
	Nav norādīts neviens klienta sertifikāts.

	BIB.006
	string
	Sertifikātam ar indeksu '{0}' nav norādīts izvilkums (thumbprint).

	BIB.007
	string
	Sertifikātam ar izvilkumu (thumbprint) '{0}' reģistrēts vairāk kā vienu reizi.

	BIB.008
	string
	Sertifikātam ar izvilkumu (thumbprint) '{0}' nav atrasts sertifikātu glabātuvē '{1}'.

	BIB.009
	string
	Glabātuvē '{1}' atrasti vairāki sertifikāti ar izvilkumu (thumbprint) '{0}'.

	BIB.010
	string
	Sertifikātam ar izvilkumu (thumbprint) '{0}' nav privātās atslēgas.

	BIB.011
	string
	Konfigurācijā nav neviena derīga sertifikāta.

	BIB.012
	string
	Failu tipam ar indeksu '{0}' nav norādīt paplašinājums.

	BIB.013
	string
	Failu tipas ar paplašinājumu '{0}' jau ir reģistrēts.

	BIB.014
	string
	{0}' paraksta nav ziņojuma objektā.

	BIB.015
	string
	Ziņojumam jābūt nosūtītam, t.i. ziņojumam jābūt izveidotam klienta parakstam.

	BIB.016
	string
	Ziņojumam jau ir pievienots DIV servera apliecinājums.

	BIB.017
	string
	Lai nosūtītu ziņojumu, ir jādefinē vismaz viens adresāts.

	BIB.018
	string
	Ziņojuma adresātam ar indeksu '{0}' ir tukša e-adrese.

	BIB.019
	string
	Datnei ar indeksu '{0}' nav satura.

	BIB.020
	string
	Ziņojuma saņēmējam ar e-adresi '{0}' nevar atrast publisko sertifikāta atslēgu šifrēšanai.

	BIB.021
	string
	Datnes jaukšanas algoritmam jābūt SHA-512

	BIB.022
	string
	Datnei jābūt definētai jaukšanas funkcijas vērtībai (hash).

	BIB.024
	string
	Datne ir tukša.

	BIB.025
	string
	Nav iespējams noteikt vai datne ir šifrēta.

	BIB.026
	string
	Šifrētas datnes izgūšanai attiecīgam sertifikātam jābūt pieejamam konfigurācijā.

	BIB.027
	string
	Datnes jaucējfunkcijas vērtība nesakrīt ar aploksnē norādīto vērtību.

	BIB.028
	string
	Ziņojumam jābūt piesaistītam apstiprināšanas informācijai, lai veiktu apstiprinājumu.

	BIB.029
	string
	Konfigurācijā norādītajai komunikācijas noildzei jābūt robežās starp 0 un 3600 sekundēm.

	
	42./56

DOKUMENTS IR IEROBEŽOTAS PIEEJAMĪBAS INFORMĀCIJA

image5.png
o DS biblotela Saneméla lenta sistema

T
|
|
|
|
|
|
|
|
|

— |

2. Nostta i |

|
I

3.2.50¢a pazinolumu par auna ziolumu

T
|
|
|
|
I
&

3.5 Parbauda jaunu zinjum srakst

-1

4 g nolumu

-~

5. Akcepts zincjoma sanemsany

7. gt painojumus par nosaajen znofmen

]
]

image1.png
RDE

TECHNOLOGIES

image2.jpeg
Valsts regionalas
attistibas agentara

image3.jpeg
N
“B
EIROPAS REGIONALAS
ATTISTIBAS FONDS

image4.jpeg
* *

* *
* *
* 4 x

EIROPAS SAVIENIBA

