
VALSTS DIGITĀLĀS ATTĪSTĪBAS AĢENTŪRA

V A L S T S I N F O R M Ā C I J A S S I S T Ē M U

S A V I E T O T Ā J A (V I S S) U N V I E N O T Ā V A L S T S U N

P A Š V A L D Ī B U P A K A L P O J U M U P O R T Ā L A

W W W . L A T V I J A . L V P I L N V E I D O Š A N A U N

U Z T U R Ē Š A N A

VISS SISTĒMAS ŽURNĀLS

KOPLIETOJUMA BIBLIOTĒKU APRAKSTS

VDAA-KBA-VISS_ZUR

22.10.2024. versija 1.15

Rīgā 2024

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 2 (64)

SATURA RĀDĪTĀJS

ATTĒLU SARAKSTS ... 5

1. IEVADS .. 6

1.1. Dokumenta nolūks .. 6

1.2. Termini un pieņemtie apzīmējumi .. 6

1.3. Saistība ar citiem dokumentiem ... 6

2. DIAGNOSTIC BIBLIOTĒKAS PALĪGKLASES .. 7

2.1. Logošanas palīgklase ... 7

2.1.1. Konstruktori ... 7

2.1.1.1. Konstruktors „LogUtility” .. 7

2.1.2. Īpašības ... 7

2.1.2.1. „LoggingEnabled” īpašība.. 7

2.1.3. Metodes .. 7

2.1.3.1. Metode „Write” ... 7

2.1.4. Piemērs ... 8

2.2. Izņēmumu palīgklase .. 8

2.2.1. Konstruktori ... 9

2.2.1.1. Konstruktors „ExceptionUtility” .. 9

2.2.2. Metodes .. 9

2.2.2.1. Metode „ThrowHelper” .. 9

2.2.2.2. Metode „ThrowHelperWarning” ... 9

2.2.2.3. Metode „ThrowHelperError” .. 9

2.2.2.4. Metode „ThrowHelperCritical” ... 9

2.2.2.5. Metode „ThrowHelperFatal” .. 10

2.2.2.6. Metode „IsFatal” .. 10

2.2.2.7. Metode „ThrowHelperArgument” ... 10

2.2.2.8. Metode „ThrowHelperArgument” ... 10

2.2.2.9. Metode „ThrowHelperArgumentNull” .. 10

2.2.2.10. Metode „ThrowHelperArgumentNull” .. 11

2.2.2.11. Metode „UseActivityId” .. 11

2.2.2.12. Metode „ClearActivityId” .. 11

2.2.2.13. Metode „TraceHandeledException” .. 11

2.3. Trasēšanas palīgklase .. 11

2.3.1. Konstruktori ... 12

2.3.1.1. Konstruktors „TraceUtilty”.. 12

2.3.2. Metodes .. 12

2.3.2.1. Metode „StartTrace” .. 12

2.3.3. Klases izmantošanas piemērs ... 12

2.4. Paplašinājumu bibliotēka IVIS.Diagnostics ... 13

2.4.1. Paziņojumi (Notifikācijas) ... 13

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 3 (64)

2.4.1.1. Metodes ... 16

2.4.2. Audits .. 18

2.4.2.1. Metodes ... 18

2.4.2.2. Parametru vērtību specificēšana ... 20

3. DIAGNOSTIC BIBLIOTĒKAS KLAŠU IZMANTOŠANAS PIEMĒRI 21

3.1. Vispārējie norādījumi .. 21

3.2. LogUtility.. 21

3.3. TraceUtility ... 23

3.4. ExceptionUtility ... 25

3.5. LogActivity ... 26

3.6. ExtraInformationProvider ... 28

3.7. Enterprise Library 4.0.0.0 .. 30

3.8. WCF Servisa un klienta trasēšana ... 33

3.8.1. Klienta konfigurācijas datne ... 33

3.8.2. Servisa konfigurācijas datne .. 34

3.8.3. Žurnalēšana ar Diagnostic.dll .. 35

3.8.4. Sinhrons servisa izsaukums .. 36

3.8.5. Asinhrons servisa izsaukums... 37

3.9. Paplašinājumu bibliotēka IVIS.Diagnostics ... 38

3.9.1. Notifikācijas servisa konfigurācija. ... 40

4. DIAGNOSTIC SEKCIJAS KONFIGURĀCIJA VISS VIDĒM – INSTRUKCIJA

ADMINISTRATORIEM ... 43

4.1. Konfigurācijas varianti atkarībā no vides .. 43

4.2. Konfigurācija izstrādes un testēšanas vidēm ... 43

4.2.1. Konfigurācija izmantojot System.Diagnostics ... 43

4.2.2. Konfigurācija izmantojot microsoft enterprise library .. 44

4.2.3. Konfigurācija, izmantojot Serilog .. 44

4.3. Konfigurācija sekcijas lietojumā - Konfigurācija VISS vidē 45

4.3.1. Sistēmas žurnāls V1 (atcelts) .. 45

4.3.2. Sistēmas žurnāls V2 .. 45

4.3.3. Audits V1 ... 46

4.3.4. Audits V2 ... 46

4.3.5. Audits ar Serilog .. 47

4.3.5.1. Jauna lietojuma izstrāde vai esoša, kas izmanto Abc.Diagnostics v1.2.x

bibliotēkas, pārkonfigurēšana ... 47

4.3.5.2. Lietojuma konfigurēšana audita rakstīšanai datnē ar Serilog 48

4.3.5.3. Lietojuma konfigurēšana audita rakstīšana RabbitMQ rindā 48

4.3.5.4. Žurnalēšanas notikumu maršrutēšana .. 49

4.3.5.5. Papildu auditējamie parametri ... 51

4.3.5.6. Lietojumu, kas izmanto v1.0.x bibliotēkas pārkonfigurācija uz auditēšanu ar

Serilog ... 53

4.3.6. Notifikācija V1 .. 54

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 4 (64)

4.3.7. Notifikācija V2 .. 54

4.4. Žurnalēšana sekošanas programmatūrai .. 55

4.5. Asinhronā žurnalēšana ... 55

4.5.1. Asinhronas logošanas konfigurācijas scenārija izvēle .. 55

4.5.2. Asinhronā logošana .NET4.5 projektiem, izmantojot Microsoft Enterprise Library

6.0 ... 56

4.5.3. Entriprise Library 6.0 MSMQDistributor to ABC diagnostics 57

4.5.4. Asinhronā logošana .NET3.5 projektiem, izmantojot Microsoft Enterprise Library

5.0 ... 58

4.5.5. Entriprise Library 5.0 MSMQDistributor to ABC diagnostics 59

4.6. Lietojuma identifikācija ... 60

4.7. Logošanas bibliotēku mijiedarbība .. 60

5. ABC.ANALYTICS.SERILOG - ŽURNALĒŠANA NO KONTEINERIZĒTĀM KOMPONENTĒM

 ... 62

5.1. Notikumu žurnalēšana .. 62

5.2. Žurnalēšanas klašu izmantošana ... 63

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 5 (64)

Attēlu saraksts

1.attēls. Logošanas palīgklasē iekļautās metodes .. 7

2.attēls. Izņēmumu palīgklasē iekļautās metodes ... 8

3.attēls. Trasēšanas palīgklasē iekļautās metodes ... 12

4.attēls. Paplašinājuma palīgklasē iekļautās metodes ... 13

5.attēls. Notifikāciju nosūtīšanas struktūra .. 14

6.attēls. Žurnalēšanas rezultāti ... 23

7.attēls. Trasēšanas rezultāti .. 24

8.attēls. Izņēmumu žurnalēšanas rezultāti .. 26

9.attēls. Aktivitāšu žurnalēšanas rezultāti .. 28

10.attēls. ExtraInformationProvider pielietošanas rezultāti .. 30

11.attēls. Sinhrona izsaukuma rezultāts .. 37

12.attēls. Asinhrona izsaukuma rezultāts .. 38

13.attēls. Ziņojumu un audita rezultāti ... 40

14.attēls. Konfigurācijas varianti atkarība no vides .. 43

15.attēls. Asinhronas logošanas un audita diagramma ... 55

16.attēls. Datu plūsma starp bibliotēkām... 61

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 6 (64)

1. Ievads

1.1. Dokumenta nolūks

Dokuments „Koplietojuma žurnalēšanas bibliotēku apraksts” satur žurnalēšanas bibliotēku

Diagnostic.dll un Enterprise Library 4.0.0.0 aprakstu un palīgklašu izmantošanas instrukcijas. Vēl

šajā dokumentā sniegta arī Diagnostic sekcijas konfigurācijas instrukcija administratoriem VISS

vidēm. Šis dokuments ir paredzēts SIA „ABC software” izstrādātājiem, VDAA administratoriem, kā

arī citiem iesaistītajiem izstrādātājiem, kas līdzdarbojas programmnodrošinājumu izstrādē un

pilnveidošanā.

1.2. Termini un pieņemtie apzīmējumi

Visi šajā dokumentā izmantotie termini un apzīmējumi ir apkopoti Terminu un saīsinājumu indeksā

[1].

1.3. Saistība ar citiem dokumentiem

Dokuments ir izstrādāts, balstoties uz šādiem dokumentiem:

[1] "Valsts informācijas sistēmu savietotāju (VISS) un Vienotā valsts un pašvaldību

pakalpojumu portāla www.latvija.lv pilnveidošana un uzturēšana". Terminu un saīsinājumu

indekss. (VDAA-TSI).

[2] Library konfigurācijas faili –

http://blogs.msdn.com/b/tomholl/archive/2006/04/02/entlib2externalconfig.aspx

[3] Instrukciju pamatā izmantots risinājums EnoughPI.sln, kas atrodas mapē

„~\Diagnostic\CS\WindowsApp\begin”.

http://blogs.msdn.com/b/tomholl/archive/2006/04/02/entlib2externalconfig.aspx

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 7 (64)

2. Diagnostic bibliotēkas palīgklases

Bibliotēkā „Diagnostic.dll” izmantotās palīgklases nodrošina nepieciešamās žurnalēšanas un

auditācijas funkcijas.

2.1. Logošanas palīgklase

Logošanas palīgklasē „LogUtility” iekļautas metodes, kas ļauj veikt notikumu žurnalēšanu.

1.attēls. Logošanas palīgklasē iekļautās metodes

2.1.1. Konstruktori

2.1.1.1. Konstruktors „LogUtility”
 public LogUtility(string sourceName)

Izveido klasi „LogUtility” ar uzdoto žurnalēšanas avotu.

Parametru apraksts:

NOSAUKUMS APRAKSTS

sourceName trasēšanas avots

2.1.2. Īpašības

2.1.2.1. „LoggingEnabled” īpašība

Īpašības apraksts:

public bool LoggingEnabled { get; }

Īpašība atgriež informāciju, vai žurnalēšana ir ieslēgta.

2.1.3. Metodes

2.1.3.1. Metode „Write”

Metodes apraksts:

 public void Write(string message, string category, int priority, int eventId,

TraceEventType severity, IDictionary<string, object> properties)

Logo ziņojumu ar uzdoto kategoriju, prioritāti, identifikatoru, nozīmīgumu un papildus īpašībām.

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 8 (64)

Metodes parametru apraksts:

NOSAUKUMS APRAKSTS

message ziņojuma teksts

category kategorija, ar kuru tiek rakstīts ziņojums

priority prioritāte, ar kuru tiek rakstīts ziņojums

eventId ziņojuma numurs vai identifikators

severity ziņojuma nozīmīgums

properties papildus parametri

 public void Write(string message, string category, int priority, int eventId,

TraceEventType severity, Exception exception)

Logo ziņojumu ar uzdoto kategoriju, prioritāti, identifikatoru, nozīmīgumu un izņēmumu.

Metodes parametru apraksts:

NOSAUKUMS APRAKSTS

message ziņojuma teksts

category kategorija, ar kuru tiek rakstīts ziņojums

priority Prioritāte, ar kuru tiek rakstīts ziņojums

eventId ziņojuma numurs vai identifikators

severity ziņojuma nozīmīgums

exception izņēmums

2.1.4. Piemērs
// Izveidojam informāciju trasēšanai

int eventId = 1;

string message = „Simple message”;

string category = „General”

TraceEventType severity = TraceEventType.Information;

// Trasējam ziņojumu

LogUtility target = new LogUtility();

target.Write(message, category, priority, eventId, severity);

2.2. Izņēmumu palīgklase

Izņēmumu palīgklasē iekļautas metodes, kas ļauj apstrādāt izņēmumus.

2.attēls. Izņēmumu palīgklasē iekļautās metodes

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 9 (64)

2.2.1. Konstruktori

2.2.1.1. Konstruktors „ExceptionUtility”

Konstruktora apraksts:

 public ExceptionUtility()

Izveido klasi ExceptionUtility.

 public ExceptionUtility(LogUtility diagnosticTrace)

Izveido klasi ExceptionUtility ar trasēšanas iespējām.

Parametru apraksts:

NOSAUKUMS APRAKSTS

diagnosticTrace trasēšanas klase

2.2.2. Metodes

2.2.2.1. Metode „ThrowHelper”

Metodes apraksts:

 public Exception ThrowHelper(Exception exception, TraceEventType eventType);

Apstrādā izņēmumu.

Parametru apraksts:

NOSAUKUMS APRAKSTS

exception izņēmums

eventType izņēmuma veids

2.2.2.2. Metode „ThrowHelperWarning”

Metodes apraksts:

 public Exception ThrowHelperWarning(Exception exception);

Apstrādā izņēmumu ar veidu „Brīdinājums”.

Parametru apraksts:

NOSAUKUMS APRAKSTS

exception izņēmums

2.2.2.3. Metode „ThrowHelperError”

Metodes apraksts:

 public Exception ThrowHelperError(Exception exception);

Apstrādā izņēmumu ar veidu „Kļūda”.

Parametru apraksts:

NOSAUKUMS APRAKSTS

exception izņēmums

2.2.2.4. Metode „ThrowHelperCritical”

Metodes apraksts:

 public Exception ThrowHelperCritical(Exception exception);

Apstrādā izņēmumu ar veidu „Kritisks”.

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 10 (64
)

Parametru apraksts:

NOSAUKUMS APRAKSTS

exception izņēmums

2.2.2.5. Metode „ThrowHelperFatal”

Metodes apraksts:

 public Exception ThrowHelperFatal(string message, Exception innerException);

Izveido un apstrādā fatālo izņēmumu ar veidu „Kļūda”.

Parametru apraksts:

NOSAUKUMS APRAKSTS

message izņēmuma ziņojums

exception Izņēmums, kurš radījis fatālo izņēmumu

2.2.2.6. Metode „IsFatal”

Metodes apraksts:

 public static bool IsFatal(Exception exception);

Pārbauda, vai uzdotais izņēmums ir fatāls.

Parametru apraksts:

NOSAUKUMS APRAKSTS

exception izņēmums

2.2.2.7. Metode „ThrowHelperArgument”

Metodes apraksts:

 public Exception ThrowHelperArgument(string message);

Izveido un apstrādā parametra izņēmumu ArgumentException ar uzdoto aprakstu.

Parametru apraksts:

NOSAUKUMS APRAKSTS

message izņēmuma apraksts

2.2.2.8. Metode „ThrowHelperArgument”

Metodes apraksts:

 public Exception ThrowHelperArgument(string message, string paramName);

Izveido un apstrādā parametra izņēmumu ArgumentException ar uzdoto aprakstu un parametra

nosaukumu.

Parametru apraksts:

NOSAUKUMS APRAKSTS

message izņēmuma apraksts

paramName parametra nosaukums

2.2.2.9. Metode „ThrowHelperArgumentNull”

Metodes apraksts:

 public Exception ThrowHelperArgumentNull(string message);

Izveido un apstrādā parametra izņēmumu ArgumentNullException ar uzdoto aprakstu.

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 11 (64
)

Parametru apraksts:

NOSAUKUMS APRAKSTS

message izņēmuma apraksts

2.2.2.10. Metode „ThrowHelperArgumentNull”

Metodes apraksts:

 public Exception ThrowHelperArgumentNull(string paramName, string message);

Izveido un apstrādā parametra izņēmumu ArgumentNullException ar uzdoto aprakstu un parametra

nosaukumu.

Parametru apraksts:

NOSAUKUMS APRAKSTS

paramName parametra nosaukums

message izņēmuma apraksts

2.2.2.11. Metode „UseActivityId”

Metodes apraksts:

 public void UseActivityId(Guid activityId);

Veikt izņēmuma trasēšanu ar uzdoto aktivitātes identifikatoru.

Parametru apraksts:

NOSAUKUMS APRAKSTS

activityId aktivitātes identifikators

2.2.2.12. Metode „ClearActivityId”

Metodes apraksts:

 public void ClearActivityId();

Noņemt uzdoto aktivitātes identifikatoru.

2.2.2.13. Metode „TraceHandeledException”

Metodes apraksts:

 public void TraceHandledException(Exception exception, TraceEventType eventType);

Veic izņēmuma trasēšanu.

Parametru apraksts:

NOSAUKUMS APRAKSTS

exception izņēmums

eventType izņēmuma stingrība

2.3. Trasēšanas palīgklase

Klase palīdz veikt trasēšanas iespējas.

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 12 (64
)

3.attēls. Trasēšanas palīgklasē iekļautās metodes

2.3.1. Konstruktori

2.3.1.1. Konstruktors „TraceUtilty”

Konstruktora apraksts:

 public TraceUtility(string operation)

Izveido klasi TraceUtility ar operācijas nosaukumu.

Parametru apraksts:

NOSAUKUMS APRAKSTS

operation operācijas nosaukums

 public TraceUtility(string operation, Guid activityId)

Izveido klasi TraceUtility ar operācijas nosaukumu un aktivitātes identifikatoru.

Parametru apraksts:

NOSAUKUMS APRAKSTS

operation operācijas nosaukums

activityId aktivitātes identifikators

2.3.2. Metodes

2.3.2.1. Metode „StartTrace”

Metodes apraksts:

 public static TraceUtility StartTrace(sting operation, Guid activityId);

Izveidojiet klasi TraceUtility ar uzdotu operācijas nosaukumu un aktivitātes identifikatoru.

Parametru apraksts:

NOSAUKUMS APRAKSTS

Operation operācijas nosaukums

activityId aktivitātes identifikators

2.3.3. Klases izmantošanas piemērs
 public void DoSomesing() {

 using (new TraceUtility("DoSomesing")) {

 ...

 }

 }

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 13 (64
)

2.4. Paplašinājumu bibliotēka IVIS.Diagnostics

Satur papildu metodes notifikāciju sūtīšanai un audita rakstīšanai.

4.attēls. Paplašinājuma palīgklasē iekļautās metodes

2.4.1. Paziņojumi (Notifikācijas)
Notifikācijas tiek nosūtītās, izmantojot notifikāciju servisu, vai arī testēšanas nolūkos rakstītās teksta

datnēs. Notifikāciju sūtīšanu nodrošina vairākas metodes, kas atrodas IVIS.Diagnostics.dll

bibliotēkas IVIS.Diagnostics.IvisLogUtilityExtension vārdtelpā. Notifikācijas tiek nosūtītas, izmantojot

http://ivis.eps.gov.lv/XMLSchemas/100000/IVISInfrastructure/v2-0/Notification.xsd struktūru.

http://ivis.eps.gov.lv/XMLSchemas/100000/IVISInfrastructure/v2-0/Notification.xsd

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 14 (64
)

5.attēls. Notifikāciju nosūtīšanas struktūra

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 15 (64
)

Struktūras entītiju un atribūtu apraksts ir pieejams 1.tabulā.

1.tabula

Struktūras entītiju apraksts

ENTĪTIJA UN TĀS APRAKSTS ENTĪTIJAS ATRIBŪTI ATRIBŪTA APRAKSTS

Message (Paziņojums) – visi
vienam paziņojumam specifiskie
dati

Title (Tēma) Īss paziņojuma satura vai izsūtīšanas mērķa
apraksts, ko nosaka paziņojuma izveidotājs.
SMS gadījumā – arī paziņojuma saturs, e-pasta
gadījumā subject.

Category (Kategorija) Paziņojuma kategorija, kas ir jebkāda ārēja vai
iekšēja klasifikatora vērtība ar/bez to
identificējošā koda.

BodyType
(Paziņojuma satura
tips)

Paziņojuma datu XML shēmas URN VISS
resursu katalogā.

BodyTransformation
(Paziņojuma satura
transformācijas URN)

Paziņojuma datu noformēšanas
transformācijas URN VISS resursu katalogā.

PostponeUntil
(Izsūtīšanas laiks)

Ja norādīts, tad datums un laiks, līdz kuram ir
atlikta paziņojuma izsūtīšana.

DiscardAfter (Atcelt
izsūtīšanu pēc)

Datums un laiks, kuru sasniedzot, neizsūtīti
paziņojumi tiek anulēti, t.i., netiks izsūtīti.

Body (Saturs) Paziņojuma teksts vai dati, kas veido
paziņojuma tekstu.

AttachmentList
(Pielikumi)

Skatīt Attachment entītiju.

Attachment (Pielikums) – atsauce
uz elektronisko dokumentu
krātuvē saglabāto dokumentu,
vai ziņojumam pievienoto
dokumentu.

EDKDocument (EDK
dokuments)

Skatīt EDKDocument entītiju.

Attachment Pievienotais dokuments.

EDKDocument (EDK dokuments)
– VISS elektronisko dokumentu
krātuvē saglabātais dokuments

Id (identifikators) VISS elektronisko dokumentu krātuvē
saglabātā dokumenta unikālais identifikators
URN formātā.

FileName (Datnes
nosaukums)

Dokumenta datnes nosaukums.

Mime (Datnes Mime
tips)

Datnes veids pēc Mime standarta.

Size (Izmērs) Datnes izmērs baitos.

Order (Secība) Dokumenta secība paziņojumā.

Description
(Apraksts)

Dokumenta apraksts VISS elektronisko
dokumentu krātuvē.

ReceiverList (Adresāti) –
informācija par paziņojuma
adresātiem – tie var būt konkrēti
lietotāji, anonīmu lietotāju
kontaktinformācija vai norāde uz
lietotāju grupu un/vai iestādi

ReceiverData
(Saņēmēja dati)

Skatīt ReceiverData entītiju.

ReceiverData (Adresāta dati)
detalizēta informācija par katru
adresātu

Receiver (Saņēmējs) Skatīt Receiver entītiju.

SendingOption
(Sūtīšanas kanāls)

Paziņojuma sūtīšanas kanāls – viens no:

• telephone (tālruņa numurs SMS
sūtīšanai);

• kdv (klienta darba vieta);

• email (e-pasta adrese).

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 16 (64
)

ENTĪTIJA UN TĀS APRAKSTS ENTĪTIJAS ATRIBŪTI ATRIBŪTA APRAKSTS

Receiver (Adresāts) User (Lietotājs) Skatīt entītijas User aprakstu.

Group (Lietotāju
grupa)

Skatīt entītijas Group aprakstu.

Guest (Lietotājs –
viesis)

Skatīt entītijas Guest aprakstu.

User (Lietotājs) VissIdentifier (VISS
identifikators)

Lietotāja VISS identifikators.

Group (lietotāju grupa) GroupCodeData Skatīt entītijas GroupCodeData aprakstu.

AuthorityID (Iestādes
identifikators)

VISS iestādes 6 zīmju identifikators.

GroupCodeData (Lietotāju
grupas dati)

GroupCode PFAS Auth grupas identifikators.

AuthorityID (Iestādes
identifikators)

VISS iestādes 6 zīmju identifikators.

Guest (Viesis) – nodrošina
specificētā tālruņa numura vai e-
pasta adreses saglabāšanu līdz
paziņojuma izsūtīšanas brīdim

SMS Tālruņa numurs, uz kuru izsūtīt SMS.

Email E-pasta adrese, uz kuru izsūtīt elektronisko
vēstuli.

2.4.1.1. Metodes

Izsaucot notifikācijas metodes, jāievēro šādi ierobežojumi:

1. Obligāti jānorāda vienu no saņēmēju identificējošajiem parametriem: groupCode (ar

authorityId), userCode, authorityId (visiem iestādes lietotājiem) vai address.

2. Obligāti jānorāda parametru title.

3. Ja tiek norādīts parametrs body, jānorāda arī parametrs bodyType. Papildus, ir iespēja noradīt

body transformāciju bodyTransformation.

4. Ja tiek norādīts parametrs bodyTransformation, jānorāda arī parametri bodyType un body.

5. Datuma formāts netiek ierobežots un var tik uzdots līdz nepieciešamajai precizitātei.

6. Parametra body izmērs pēc transformācijas nedrīkst pārsniegt 5MB.

7. IVIS.Diagnostic.dll bibliotēka neierobežo nosūtāmo pielikumu izmēru, to nosaka EDK un

Notifikāciju servisa konfigurācija.

8. IVIS.Diagnostic.dll bibliotēka veic sūtīšanu asinhroni, paziņojuma izsūtīšana ir atkarīga no

klausītāja konfigurācijas.

Visi Notifikācijas servisa atgriežamo ziņojumu laika atribūti ir noradīti UTC.

Metožu parametru izmantošana atkarība no sūtīšanas kanāla ir redzama 2.tabulā.

2.tabula

Metožu parametru izmantošana atkarība no sūtīšanas kanāla (M – obligāts, O – neobligāts)

PARAMETRA NOSAUKUMS E-PASTS IDDV/KDV SMS

transactionId O O

address, groupCode (ar authorityId), authorityId vai
userCode

M M M

title M M M

category O O

bodyTransformation (ja ir noradīts body) O O

Body un bodyType O O

postponeUnitil O O

discardAfter O O

attachments O O

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 17 (64
)

2.4.1.1.1. Metode „SendGroupNotification”

Metodes apraksts:

public static void SendGroupNotification string groupCode, string authorityId, string title,

[SendingType sendingType = SendingType.email], [string bodyType = null], [XPathNavigator body =

null], [string bodyTransformation = null], [string transactionId = null], [CategoryType category =

null], [DateTime? postponeUntil = null], [DateTime? discardAfter = null], [AttachmentList

attachments = null])

Nosūta lietotāju grupai paziņojumu pēc lietotāju grupas koda un/vai iestādes identifikatora.

Parametru apraksts:

NOSAUKUMS APRAKSTS

groupCode saņēmēja lietotāju grupas identifikators

authorityId saņēmēja iestādes identifikators, kas ir reģistrēts VISS Klasifikatoru kataloga
Iestāžu klasifikatorā

title paziņojuma virsraksts vai SMS ziņojums

sendingType Paziņojuma sūtīšanas iespēja: e-pasts, IDDV vai sms. Pēc noklusējuma šis
parametrs vienmēr ir e-pasts.

bodyType paziņojuma datu XML shēmas URN (no Resursu kataloga) ar norādītu elementa
nosaukumu, piemēram:„URN:IVIS:100001:XSD-Viss-Notification-v1-0-TYPE-
Notification”.

body paziņojuma dati

bodyTransformation paziņojuma datu noformēšanas transformācijas URN (no Resursu kataloga)

transactionId transakcijas, kurā izsūtīts paziņojums, unikālais identifikators, tikai e-
pakalpojumiem

category paziņojuma kategorija, kas ir jebkāda ārēja vai iekšēja klasifikatora vērtība
ar/bez to identificējošā koda

postponeUnitil datums un laiks, līdz kuram aizturēt paziņojuma sūtīšanu

discardAfter datums un laiks, pēc kura nenosūtīts paziņojums, tiks nodzēsts neaizsūtot.

attachments paziņojumam pievienotie dokumenti:

• fiziskie pielikumi

reference uz EDK pievienoto dokumentu

2.4.1.1.2. Metode „SendNotification”

Metodes apraksts:

public static void SendNotification(string address, string title, [string bodyType = null],

[XPathNavigator body = null], [string bodyTransformation = null], [string transactionId = null],

[CategoryType category = null], [DateTime? postponeUntil = null], [DateTime? discardAfter = null],

[AttachmentList attachments = null])

Nosūta lietotājam bez profila paziņojumu uz e-pastu.

Parametru apraksts:

NOSAUKUMS APRAKSTS

address saņēmēja e-pasts

title paziņojuma virsraksts vai SMS ziņojums

bodyType paziņojuma datu XML shēmas URN (no Resursu kataloga) ar norādītu
elementa nosaukumu, piemēram:„URN:IVIS:100001:XSD-Viss-Notification-
v1-0-TYPE-Notification”

body paziņojuma dati

bodyTransformation paziņojuma datu noformēšanas transformācijas URN (no Resursu kataloga)

transactionId transakcijas, kurā izsūtīts paziņojums, unikālais identifikators, tikai e-
pakalpojumiem

category paziņojuma kategorija

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 18 (64
)

NOSAUKUMS APRAKSTS

postponeUnitil datums un laiks, līdz kuram aizturēt paziņojuma sūtīšanu

discardAfter datums un laiks, pēc kura nenosūtīts paziņojums, tiks nodzēsts neaizsūtot

attachments paziņojumam pievienotie dokumenti:

• fiziskie pielikumi

• reference uz EDK pievienoto dokumentu

2.4.1.1.3. Metode „SendUserNotification”

Metodes apraksts:

public static void SendUserNotification(string userCode, string title, [SendingType

sendingType = SendingType.email], [string bodyType = null], [XPathNavigator body = null], [string

bodyTransformation = null], [string transactionId = null], [CategoryType category = null],

[DateTime? postponeUntil = null], [DateTime? discardAfter = null], [AttachmentList attachments =

null])

Nosūta sistēmas lietotājam paziņojumu pēc tā personas koda.

Parametru apraksts:

NOSAUKUMS APRAKSTS

userCode personas kods vai cits saņēmēja identifikators

title paziņojuma virsraksts vai SMS ziņojums

sendingType Paziņojuma sūtīšanas iespēja: e-pasts, IDDV vai sms. Pēc noklusējuma
šis parametrs vienmēr ir e-pasts

bodyType paziņojuma datu XML shēmas URN (no Resursu kataloga) ar norādītu
elementa nosaukumu, piemēram:„URN:IVIS:100001:XSD-Viss-
Notification-v1-0-TYPE-Notification”.

body paziņojuma dati

bodyTransformation paziņojuma datu noformēšanas transformācijas URN (no Resursu
kataloga)

transactionId transakcijas, kurā izsūtīts paziņojums, unikālais identifikators, tikai e-
pakalpojumiem

category paziņojuma kategorija

postponeUnitil datums un laiks, līdz kuram aizturēt paziņojuma sūtīšanu

discardAfter datums un laiks, pēc kura nenosūtīts paziņojums, tiks nodzēsts neaizsūtot

attachments paziņojumam pievienotie dokumenti:

• fiziskie pielikumi

reference uz EDK pievienoto dokumentu

2.4.2. Audits
Metodes atrodas IVIS.Diagnostics.dll bibliotēkas IVIS.Diagnostics.IvisLogUtilityExtension vārdtelpā.
Auditācijas datu sūtītāja informācija tiek iegūta no drošības talona.

2.4.2.1. Metodes

2.4.2.1.1. Metode „WriteAudit”

Metodes apraksts:

public static void WriteAudit(string actionCode, string message, IDictionary<string, object>

details = null, [int eventId = -1], [IEnumerable<ObjectInfo> objects = null], [RetentionInfo

retention = null], [string applicationId = null], [IPrincipal subject = null], [DateTime?

timeStamp = null])

Raksta veiktās darbības auditu.

Parametru apraksts:

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 19 (64
)

NOSAUKUMS APRAKSTS

actionCode darbības veids, skat. 2.4.2.2.paragrāfā, kas ir reģistrēts VISS Klasifikatoru kataloga
Auditācijas darbību klasifikatorā.

message Notikuma apraksts

details notikuma papildu atribūti

eventId sistēmas stāvokļa identifikators, skat. 2.4.2.2. paragrāfā.

objects saraksts ar tipiem un identifikatoriem objektiem (objectId un objectTypeId), ar kuriem
notika auditējamā darbība

retention Arhivēšanas grupa un arhivēšanas datums

applicationId lietojuma identifikators, kas ir reģistrēts VISS Klasifikatoru kataloga Informācijas
sistēmas notikumu klasifikatorā. Pēc noklusējuma, ja netiek aizpildīts, tiek ņemts no
konfigurācijas datnes.

subject Notikuma veidotajs.

timeStamp Notikuma laiks UTC formāta.

2.4.2.1.2. Metode „WriteAudit” Novecojusi: DAIRM2 vairs neatbalsta datus XML formā

Metodes apraksts:

public static void WriteAudit(string actionCode, IXPathNavigable body, [string bodyType =

null], [int eventId = 0], [string objectId = null], [string objectTypeId = null], [string

applicationId = null])

Raksta veiktās darbības auditu.

Parametru apraksts:

NOSAUKUMS APRAKSTS

actionCode darbības veids, skat. 2.4.2.2.paragrāfā, kas ir reģistrēts VISS Klasifikatoru kataloga
Auditācijas darbību klasifikatorā.

body paziņojuma dati

bodyType paziņojuma XML shēmas URN

eventId sistēmas stāvokļa identifikators, skat. 2.4.2.2. paragrāfā.

objectId objekta, ar kuru notiek darbība identifikators

objectTypeId objekta, ar kuru notiek darbība tips, kurš ir reģistrēts VISS Klasifikatoru kataloga
Auditācijas objektu klasifikatorā

applicationId lietojuma identifikators kas ir reģistrēts VISS Klasifikatoru kataloga Informācijas
sistēmas notikumu klasifikatorā.

2.4.2.1.3. Metode „WriteAudit”

Metodes apraksts:

public static void WriteAudit(string actionCode, string message, [int eventId = -1], string

objectId = null], [string objectTypeId = null], [string applicationId = null])

Raksta veiktās darbības auditu.

Parametru apraksts:

NOSAUKUMS APRAKSTS

actionCode darbības veids, skat. 2.4.2.2. paragrāfā, kas ir reģistrēts VISS Klasifikatoru
kataloga Auditācijas darbību klasifikatorā.

message paziņojuma teksts

eventId sistēmas stāvokļa identifikators, skat. 2.4.2.2. paragrāfā.

objectId objekta, ar kuru notiek darbība identifikators

objectTypeId objekta, ar kuru notiek darbība tips, kurš ir reģistrēts VISS Klasifikatoru kataloga
Auditācijas objektu klasifikatorā

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 20 (64
)

applicationId lietojuma identifikators, kas ir reģistrēts VISS Klasifikatoru kataloga Informācijas
sistēmu klasifikatorā

2.4.2.2. Parametru vērtību specificēšana

Izsaucot WriteAudit metodes jāievēro šādi priekšnosacījumi uzdodot parametra eventId vērtības:

NOTIKUMS IDENTIFIKATORS APRAKSTS

Unspecified -1 Notikuma identifikators netiek norādīts

Created 0 Tiek pievienots objekts

Read 1 Tiek nolasīts objekts (no datu bāzes vai faila)

Edited 2 Tiek modificēts objekts

Deleted 3 Tiek dzēsts objekts

Login 4 Tiek veikta pieteikšanās

Logout 5 Tiek veikta atteikšanās

Parametru vērtību piešķiršana:

PARAMETRS VĒRTĪBA PIEZĪMES

actionCode {objekta tips}[Notikums]

eventId [Identifikators]

message {objekta tips} {objekta nosaukums} [Notikums] Lokalizēts atbilstoši konfigurācijai

Parametru vērtību piemēri:

APPLICATIONID ACTIONCODE EVENTID MESSAGE

VISS.RK XSDType 0 Tips ‘{0}’ izveidots

VISS.RK XSDGroup 0 Grupa ‘{0}’ izveidota

VISS.RK TypeDeleted 3 Tips ‘{0}’ izdzēsts

VISS.RK TypeEdited 2 Tips ‘{0}’ modificēts

VISS.RK GroupEdited 2 Grupa ‘{0}’ modificēta

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 21 (64
)

3. Diagnostic bibliotēkas klašu izmantošanas piemēri

Bibliotēku „Diagnostic.dll” un „Enterprise Library 4.0.0.0” uzstādīšana un konfigurēšana atbilstoši

izmantotajai žurnalēšanas palīgklasei.

3.1. Vispārējie norādījumi

Tālāko instrukciju pamatā ir izmantots lietojums EnoughPI [3]. Tas aprēķina konstanti pi līdz

uzdotajai precizitātei. Lietotājs ievada vēlamo precizitāti, lietojot NumericUpDown vadīklu, un

nospiež Calculate pogu. Aprēķinu var apturēt, nospiežot pogu Cancel.

Pirms tālāku darbību veikšanas nepieciešams izpildīt šādus priekšnosacījumus:

1. Izveidot jaunu risinājuma EnoughPI.sln ([3]) kopiju, kurā tiks veiktas visas turpmākās darbības;

2. Atvērt risinājumu EnoughPI.sln;

3. Atvērt projektu EnoughPI un iezīmēt katalogu References, izpildīt konteksta izvēlnes komandu

Add Reference un pievienot projektam Diagnostic.dll bibliotēku (tipiski atrodama katalogā

„~\Diagnostic\Lib”).

3.2. LogUtility

Žurnalēšanas funkcionalitāti piesaista esošam projektam, izmantojot LogUtility klasi. Izpildītais

risinājums, uz kā balstīta šī instrukcija, atrodams katalogā „~\Diagnostic\CS\WindowsApp\ex01Log”.

1. Iezīmējiet projekta failu Calc\Calculator.cs un izpildiet konteksta izvēlnes komandu View Code;

2. Pievienojiet vārdtelpu Diagnostic faila augšdaļā;

using Diagnostic;

3. Modificējiet konfigurācijas datni app.config, pievienojot šādus atribūtus:

• Konfigurācijas sekciju diagnosticConfiguration;

<configSections>

<section name="diagnosticConfiguration"

 type="Diagnostic.Configuration.DiagnosticSettings,

 Diagnostic, Version=1.0.0.0"/>

</configSections>

• Sadaļu system.diagnostics, kas satur sadaļas: sharedListeners (pēc izvēles) un sources.

Sadaļā sharedListeners definējiet koplietojamos žurnalēšanas failus, norādot šādus

atribūtus: atrašanās vieta – initializeData, šajā gadījumā lietojuma katalogā, tips – type,

identifikators – name, papildus žurnalēšanas iespējas – traceOutputOptions un citi atribūti

pēc nepieciešamības;

<system.diagnostics>

<sharedListeners>

 <add initializeData="Progress.svclog"

 type="System.Diagnostics.XmlWriterTraceListener,

 System, Version=2.0.0.0, Culture=neutral,

 PublicKeyToken=b77a5c561934e089"

 name="ProgressLog"

 traceOutputOptions="Timestamp"/>

 <add initializeData="General.svclog"

 type="System.Diagnostics.XmlWriterTraceListener,

 System, Version=2.0.0.0, Culture=neutral,

 PublicKeyToken=b77a5c561934e089"

 name="GeneralLog"

 traceOutputOptions="Timestamp"/>

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 22 (64
)

</sharedListeners>

• Sadaļā sources definējiet ziņojumu klases source ar atbilstošiem identifikatoriem name.

Katrai klasei piesaistīt vismaz vienu žurnalēšanas failu listeners, norādot kādu no

koplietojamajiem failiem pēc to identifikatora name, vai definējot jaunu žurnalēšanas failu;

<sources>

 <source name="General" switchValue="All">

 <listeners>

 <add name="GeneralLog"/>

 </listeners>

 </source>

 <source name="Progress" switchValue="All">

 <listeners>

 <add name="ProgressLog" />

 </listeners>

 </source>

</sources>

• Sadaļā system.diagnostics definējiet atribūtu trace ar īpašību autoflush un vērtību true. Kas

norāda, ka rakstīšana žurnalēšanas failā tiks veikta uzreiz.

<trace autoflush="true" />

</system.diagnostics>

4. Failā Calc\Calculator.cs izveidojiet LogUtility klases eksemplāru, klases Calculator ietvaros,

norādot atribūtu sourceName, kas tiks lietots ziņojumu avota identificēšanai, šajā gadījumā

projekta nosaukums EnoughPI;

LogUtility logwriter = new LogUtility("EnoughPI");

5. Nepieciešamajās vietās pievienojiet projekta kodam rakstīšanas metodes Write. Kategorijā

norādiet žurnalēšanas klases identifikatoru;

// TODO: Log final result

string message = string.Format("Rezultāts: Pi = {0}, precizitāte = {1}", args.Pi, args.Digits);

logwriter.Write(message, Category.General, Priority.Normal, 1,

System.Diagnostics.TraceEventType.Information);

// TODO: Log exception

logwriter.Write("Izņēmums", Category.General, Priority.High, 4,

System.Diagnostics.TraceEventType.Error, args.Exception);

6. Nepieciešamības gadījumā modificējiet risinājumā iekļautā projekta EnoughPI.Logging

ziņojumu kategoriju Category un prioritāšu Priority struktūras, kas definētas Constants.cs failā;

public struct Priority

{

public const int Lowest = 0;

 public const int Low = 1;

public const int Normal = 2;

 public const int High = 3;

 public const int Highest = 4;

}

public struct Category

{

public const string General = "General";

 public const string Progress = "Progress";

}

7. Iegūtais rezultāts apkopojot General un Progress žurnālus (skat. 6.attēlu).

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 23 (64
)

6.attēls. Žurnalēšanas rezultāti

3.3. TraceUtility

Šajā piemērā tiks aprakstītas darbības, kas jāveic, lai piesaistītu esošam projektam trasēšanas

funkcionalitāti, izmantojot TraceUtility klasi. Izpildītais risinājuma piemērs uz kā balstīta šī instrukcija

atrodams katalogā „~\Diagnostic\CS\WindowsApp\ex02Trace”.

1. Iezīmējiet projekta failu Calc\Calculator.cs un izpildiet konteksta izvēlnes komandu View Code;

2. Pievienojiet vārdtelpu Diagnostic faila augšdaļā;

using Diagnostic;

3. Modificējiet konfigurācijas datni app.config, pievienojot šādus atribūtus:

• Konfigurācijas sekciju diagnosticConfiguration;

<configSections>

<section name="diagnosticConfiguration"

 type="Diagnostic.Configuration.DiagnosticSettings,

 Diagnostic, Version=1.0.0.0"/>

</configSections>

• Sadaļu system.diagnostics, kas satur sadaļas sharedListeners (pēc izvēles) un sources.

Sadaļā sources definējiet ziņojumu klases source, ar atbilstošiem identifikatoriem name.

Katrai klasei piesaistiet vismaz vienu listeners failu, norādot kādu no koplietojamajiem failiem

pēc tā identifikatora name, vai definējiet jaunu failu, norādot šādus atribūtus: atrašanās vieta

– initializeData, tips – type, identifikators – name, papildus iespējas – traceOutputOptions un

citi atribūti pēc nepieciešamības;

<system.diagnostics>

 <sources>

 <source name="Trace" switchValue="All">

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 24 (64
)

 <listeners>

 <add initializeData="Trace.svclog"

 type="System.Diagnostics.XmlWriterTraceListener,

 System, Version=2.0.0.0, Culture=neutral,

 PublicKeyToken=b77a5c561934e089"

 name="Tracer"

 traceOutputOptions="Timestamp"/>

 </listeners>

</source>

 </sources>

• Sadaļā system.diagnostics definējiet atribūtu trace ar īpašību autoflush un vērtību true. Kas

norāda, ka rakstīšana failā tiks veikta uzreiz.

<trace autoflush="true" />

</system.diagnostics>

4. Projekta kodā izvietojiet trasēšanas metodes StartTrace, iekļaujot trasējamo koda fragmentu

using operatora figūriekavās, un kā parametru norādot ziņojumu klases source identifikatoru

name;

protected void OnCalculating(CalculatingEventArgs args)

{

using (TraceUtility.StartTrace(Category.Trace))

 {

 if (Calculating != null)

 Calculating(this, args);

}

}

5. Nepieciešamības gadījumā modificējiet risinājumā iekļautā projekta EnoughPI.Logging

ziņojumu kategoriju Category un prioritāšu Priority struktūras, kas definētas Constants.cs failā;

public struct Category

{

public const string Trace = "Trace";

}

6. Iegūtais rezultāts trasējot metodes Calculate un OnCalculating (skat. 7.attēlu).

7.attēls. Trasēšanas rezultāti

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 25 (64
)

3.4. ExceptionUtility

Piemērā tiks aprakstītas darbības, kas jāveic, lai piesaistītu esošajam projektam izņēmumu

žurnalēšanas funkcionalitāti, izmantojot ExceptionUtility klasi. Realizētais piemērs uz kā balstīta šī

instrukcija atrodams katalogā „~\Diagnostic\CS\WindowsApp\ex03Exception”.

1. Iezīmējiet projekta failu Calc\Calculator.cs un izpildiet konteksta izvēlnes komandu View Code;

2. Pievienojiet vārdtelpu Diagnostic faila augšdaļā;

using Diagnostic;

3. Modificējiet konfigurācijas datni app.config, pievienojot šādus atribūtus:

• Konfigurācijas sekciju diagnosticConfiguration;

<configSections>

<section name="diagnosticConfiguration"

 type="Diagnostic.Configuration.DiagnosticSettings,

 Diagnostic, Version=1.0.0.0"/>

</configSections>

• Sadaļu system.diagnostics, kas satur sadaļas: sharedListeners (pēc izvēles) un sources.

Sadaļā sources definējiet ziņojumu klasi source ar identifikatoru name = „General”. Klasei

piesaistiet vismaz vienu listeners failu, norādot kādu no koplietojamajiem failiem pēc tā

identifikatora name, vai definējot jaunu failu norādot šādus atribūtus: atrašanās vieta –

initializeData, tips – type, identifikators – name, papildus iespējas – traceOutputOptions un

citi atribūti pēc nepieciešamības;

<system.diagnostics>

 <sources>

 <source name="General" switchValue="All">

 <listeners>

 <add initializeData="Exception.svclog"

 type="System.Diagnostics.XmlWriterTraceListener,

 System, Version=2.0.0.0, Culture=neutral,

 PublicKeyToken=b77a5c561934e089"

 name="Exception"

 traceOutputOptions="Timestamp"/>

 </listeners>

</source>

 </sources>

• Sadaļā system.diagnostics definējiet atribūtu trace ar īpašību autoflush un vērtību true. Kas

norāda, ka rakstīšana failā tiks veikta uzreiz.

<trace autoflush="true" />

</system.diagnostics>

4. Failā Calc\Calculator.cs izveidojiet ExceptionUtility klases eksemplāru klases Calculator

ietvaros, kā parametru norādot LogUtility klases eksemplāru ar parametru sourceName, kas

tiks lietots ziņojumu avota identificēšanai;

ExceptionUtility exceptionWriter = new ExceptionUtility(new LogUtility("EnoughPI"));

5. Projekta kodā pēc nepieciešamības izvietojiet izņēmumu rakstīšanas metodes, piemēram

ThrowHelperError vai citas;

protected void OnCalculatorException(CalculatorExceptionEventArgs args)

{

// TODO: Log exception

exceptionWriter.ThrowHelperError(args.Exception);

if (CalculatorException != null)

CalculatorException(this, args);

}

6. Šajā gadījumā netiek specificēta ziņojumu kategorija, bet lietota noklusētā kategorija „General”,

tāpēc jāizveido atbilstoša ziņojumu klase app.config failā (3.solis);

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 26 (64
)

7. Rezultāta iegūšanai tika radīta izņēmuma situācija un iegūts šāds rezultāts (skat. 8.attēlu).

8.attēls. Izņēmumu žurnalēšanas rezultāti

3.5. LogActivity

Piemērā aprakstītas darbības, kas jāveic, lai piesaistītu esošam projektam aktivitāšu trasēšanas

funkcionalitāti, izmantojot LogActivity klasi. Realizētais piemērs uz kā balstīta šī instrukcija atrodams

katalogā „~\Diagnostic\CS\WindowsApp\ex04Activity”.

1. Iezīmējiet projekta failu Calc\Calculator.cs un izpildiet konteksta izvēlnes komandu View Code;

2. Pievienojiet vārdtelpu Diagnostic faila augšdaļā;

using Diagnostic;

3. Modificējiet konfigurācijas datni app.config, pievienojot šādus atribūtus:

• Konfigurācijas sekciju diagnosticConfiguration;

<configSections>

<section name="diagnosticConfiguration"

 type="Diagnostic.Configuration.DiagnosticSettings,

 Diagnostic, Version=1.0.0.0"/>

</configSections>

• Sadaļu system.diagnostics, kas satur sadaļas: sharedListeners (pēc izvēles) un sources.

Sadaļā sharedListeners definējiet koplietojamos trasēšanas failus, norādot šādus atribūtus:

atrašanās vieta – initializeData, šajā gadījumā lietojuma katalogā, tips – type, identifikators –

name, papildus žurnalēšanas iespējas – traceOutputOptions un citi atribūti pēc

nepieciešamības;

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 27 (64
)

<system.diagnostics>

 <sharedListeners>

 <add initializeData="Activity.svclog"

 type="System.Diagnostics.XmlWriterTraceListener, System,

 Version=2.0.0.0, Culture=neutral,

 PublicKeyToken=b77a5c561934e089"

 name="ActivityLog"

 traceOutputOptions="Timestamp"/>

 </sharedListeners>

• Sadaļā sources definējiet ziņojumu klases source ar identifikatoriem name = „General” un

„Activity”. Klasēm piesaistiet vismaz vienu listeners failu, norādot kādu no koplietojamajiem

failiem pēc tā identifikatora name, vai definējiet jaunu failu.

 <sources>

 <source name="General" switchValue="All">

 <listeners>

 <add name="ActivityLog"/>

 </listeners>

</source>

 <source name="Activity" switchValue ="All">

 <listeners>

 <add name="ActivityLog"/>

 </listeners>

 </source>

 </sources>

• Sadaļā system.diagnostics definējiet atribūtu trace ar īpašību autoflush un vērtību true. Kas

norāda, ka rakstīšana failā tiks veikta uzreiz.

<trace autoflush="true" />

</system.diagnostics>

4. Failā Calc\Calculator.cs izsauciet LogActivity metodi UseDiagnosticTrace, lai iespējotu aktivitāšu

trasēšanu.

LogActivity.UseDiagnosticTrace(new LogUtility("EnoughPI"));

5. Projekta kodā pēc nepieciešamības izvietojiet aktivitāšu trasēšanas metodes

CreateBoundedActivity. Norādiet aktivitātes darbības apgabalu, izmantojot using operatoru.

protected void OnCalculated(CalculatedEventArgs args)

{

using (var la = LogActivity.CreateBoundedActivity(false))

 {

 la.Start("Calculated", "type");

 if (Calculated != null)

 Calculated(this, args);

}

}

Vai arī lietot metodes Start() un Dispose();

protected void OnCalculatorException(CalculatorExceptionEventArgs args)

{

LogActivity.CreateBoundedActivity(false).Start("CalculatorException",

"type");

 if (CalculatorException != null)

 CalculatorException(this, args);

 LogActivity.Current.Dispose();

}

6. Asinhrono metožu izsaukumu gadījumā:

• Definējiet LogActivity tipa mainīgo klases Calculator ietvaros;

private LogActivity la;

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 28 (64
)

• Izveidojiet aktivitāti CreateBoundedActivity asinhronajā izsaukumā un uzsāciet tās trasēšanu

izsaucot metodi Start();

public IAsyncResult BeginCalculate(int digits)

{

 la = LogActivity.CreateBoundedActivity();

 la.Start("BeginCalculate", "type");

 dlg = new CalculateDelegate(this.Calculate);

 AsyncCallback callback = new AsyncCallback(this.CalculateCallback);

 return dlg.BeginInvoke(digits, callback, new object[] {dlg, la});

}

• Apturet izveidoto aktivitāti, izsaucot metodi Dispose(), atgriežoties no asinhronā izsaukuma.

private void CalculateCallback(IAsyncResult ar)

{

CalculateDelegate dlg = (CalculateDelegate) (ar.AsyncState as

object[])[0];

dlg.EndInvoke(ar);

LogActivity la = (LogActivity)(ar.AsyncState as object[])[1];

la.Dispose();

}

7. Trasējot aktivitātes, netiek specificēta ziņojumu kategorija, bet lietotas noklusētās kategorijas

„Activity” un „General”, tāpēc izveidojiet atbilstošas ziņojumu klases app.config failā (3.solis);

8. Rezultāta iegūšanai tika radīta arī izņēmuma situācija un veikta tās žurnalēšana, izmantojot

ExceptionUtility un iegūts šāds rezultāts (skat. 9.attēls.).

9.attēls. Aktivitāšu žurnalēšanas rezultāti

3.6. ExtraInformationProvider

Klase ExtraInformationProvider nodrošina lietotāja veidotu īpašību iekļaušanu žurnālu failos.

Piemērā aprakstītas darbības, kas jāveic, lai piesaistītu ExtraInformationProvider funkcionalitāti

iepriekš aplūkotajai žurnalēšanai, izmantojot LogUtility.

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 29 (64
)

Realizētais piemērs uz kā balstīta šī instrukcija atrodams katalogā

„~\Diagnostic\CS\WindowsApp\ex05EnterpriseLib”.

1. Pievienojiet klasēm šādas vārdtelpas:

using System.Collections.Generic;

using Diagnostic.ExtraInformation;

2. Izveidojiet klasi ar IExtraInformationProvider interfeisu un implementējiet tā metodi

PopulateDictionary. Metode aizpilda Dictionary tipa mainīgo ar īpašībām un to vērtībām.

Izveidojiet klases konstruktoru, kuram kā atribūti tiks padotas žurnalēšanas failos ierakstāmās

vērtības;

public class ExtraInfoProvider : IExtraInformationProvider

{

 private string value;

 private int digits;

 public ExtraInfoProvider(string value, int digits)

 {

 this.value = value;

 this.digits = digits;

 }

 public void PopulateDictionary(IDictionary<string, object> dictionary)

 {

 if (this.value != null)

 {

 dictionary.Add("PI", this.value);

 dictionary.Add("Digits", this.digits);

 }

 }

}

3. Lai ierakstītu žurnalēšanas failā vēlamās īpašības, nepieciešams veikt šādas darbības:

• Definējiet Dictionary tipa mainīgo;

• Izveidojiet klases eksemplāru un konstruktorā padot failā rakstāmās vērtības;

• Izsauciet klases eksemplāra metodi PopulateDictionary un tās parametrā uzdodiet iepriekš

definēto Dictionary tipa mainīgo;

• Izsauciet LogUtility metodi Write un parametros norādiet ziņojuma tekstu un definēto

Dictionary tipa mainīgo.

Dictionary<string, object> p = new Dictionary<string, object>();

var x = new ExtraInfoProvider(args.Pi, args.Digits);

x.PopulateDictionary(p);

logWriter.Write("Result", p);

4. To pašu rezultātu iespējams sasniegt neveidojot atsevišķu klasi Dictionary tipa mainīgā

aizpildīšanai, bet gan veicot šādas darbības:

• Definējiet Dictionary tipa mainīgo;

• Pievienojiet mainīgajam nepieciešamās īpašības un to vērtības, izsaucot metodi Add;

• Izsauciet LogUtility metodi Write, parametros norādot ziņojuma tekstu un definēto Dictionary

tipa mainīgo.

Dictionary<string,object> p = new Dictionary<string,object>();

p.Add("Pi",args.Pi);

logWriter.Write("Result", p);

5. Iegūtais rezultāts pievienojot īpašības Pi un Digits (skat. 10.attēls.).

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 30 (64
)

10.attēls. ExtraInformationProvider pielietošanas rezultāti

3.7. Enterprise Library 4.0.0.0

Visas iepriekš aplūkotās žurnalēšanas un trasēšanas funkcijas var tikt realizētas ne tikai izmantojot

Diagnostic bibliotēku, bet arī izmantojot Enterprise Library bibliotēkas, bez jebkādām izmaiņām

kodā. Lai to realizētu, nepieciešams veikt Enterprise Library konfigurēšanu. Pēc noklusējuma tiek

lietota Diagnostic.dll, lai veiktu rakstīšanu žurnalēšanas failos, bet iekļaujot Enterprise Library

bibliotēkas, tas mainīsies un tiks izmantota Enterprise Library.

Piemērā tiks aprakstītas darbības, kas jāveic, lai piesaistītu un konfigurētu Enterprise Library

bibliotēkas esošam projektam. Realizētais piemērs uz kā balstīta šī instrukcija, atrodams katalogā

„~\Diagnostic\CS\WindowsApp\ ex05EnterpriseLib”.

1. Atveriet projektu EnoughPI un iezīmējiet katalogu References, izpildot konteksta izvēlnes

komandu Add Reference un pievienojiet projektam šādas bibliotēkas (tipiski atrodamas katalogā

„~\Diagnostic\Lib”):

• Microsoft.Practices.EnterpriseLibrary.Logging.dll;

• Microsoft.Practices.EnterpriseLibrary.Common.dll;

• Microsoft.Practices.ObjectBuilder2.dll.

2. Modificējiet konfigurācijas datni app.config, papildus pievienojot šādus atribūtus:

• Konfigurācijas sekciju enterpriseLibrary.ConfigurationSource; [2]

<configSections>

<section name="enterpriseLibrary.ConfigurationSource"

 type="Microsoft.Practices.EnterpriseLibrary.Common.

 Configuration.ConfigurationSourceSection,

 Microsoft.Practices.EnterpriseLibrary.Common,

 Version=4.0.0.0, Culture=neutral,

 PublicKeyToken=31bf3856ad364e35"/>

</configSections>

• Sadaļu enterpriseLibrary.ConfigurationSource, kas satur sadaļu sources. Tajā norādot

Enterprise Library ārējos konfigurācijas failus, to nosaukumu un atrašanās vietu – filePath,

tipu – type un identifikatoru – name. Kā arī norāda pielietotā konfigurācijas faila identifikatoru

– name parametrā selectedSource.

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 31 (64
)

<enterpriseLibrary.ConfigurationSource selectedSource="File Configuration Source">

 <sources>

<add name="File Configuration Source"

 type="Microsoft.Practices.EnterpriseLibrary.Common.

 Configuration.FileConfigurationSource,

 Microsoft.Practices.EnterpriseLibrary.Common,

 Version=4.0.0.0, Culture=neutral,

 PublicKeyToken=31bf3856ad364e35"

 filePath="Enterprise.config"/>

 </sources>

</enterpriseLibrary.ConfigurationSource>

3. Izveidojiet Enterprise Library konfigurācijas datni, piemēram – „Enterprise.config”, un

pievienojiet šādus atribūtus:

• Konfigurācijas sekcijas loggingConfiguration un dataConfiguration;

<configSections>

 <section name="loggingConfiguration"

 type="Microsoft.Practices.EnterpriseLibrary.Logging.

 Configuration.LoggingSettings,

 Microsoft.Practices.EnterpriseLibrary.Logging,

 Version=4.0.0.0, Culture=neutral,

 PublicKeyToken=31bf3856ad364e35"

 requirePermission="false" />

 <section name="dataConfiguration"

 type="Microsoft.Practices.EnterpriseLibrary.Data.

 Configuration.DatabaseSettings,

 Microsoft.Practices.EnterpriseLibrary.Data, Version=4.0.0.0,

 Culture=neutral, PublicKeyToken=31bf3856ad364e35" />

</configSections>

• sekcijā loggingConfiguration definējiet šādas sadaļas:

o listeners;

o formatters;

o categorySources;

o specialSources.

<loggingConfiguration name="Logging Application Block"

 tracingEnabled="true"

 defaultCategory="General" logWarningsWhenNoCategoriesMatch="true">

• sadaļa listeners satur žurnalēšanas failus un to atribūtus;

<listeners>

 <add fileName="trace.log" header="-----------------------------------"

 footer="--"

 formatter="Text Formatter"

 listenerDataType="Microsoft.Practices.EnterpriseLibrary.Logging.

Configuration.FlatFileTraceListenerData,

 Microsoft.Practices.EnterpriseLibrary.Logging, Version=4.0.0.0,

Culture=neutral, PublicKeyToken=31bf3856ad364e35"

 traceOutputOptions="DateTime" filter="All"

 type="Microsoft.Practices.EnterpriseLibrary.Logging.

TraceListeners.FlatFileTraceListener,

Microsoft.Practices.EnterpriseLibrary.Logging, Version=4.0.0.0,

Culture=neutral, PublicKeyToken=31bf3856ad364e35"

 name="FlatFile TraceListener" />

 <add fileName="unp.svclog"

listenerDataType="Microsoft.Practices.EnterpriseLibrary.

Logging.Configuration.XmlTraceListenerData,

Microsoft.Practices.EnterpriseLibrary.Logging, Version=4.0.0.0,

Culture=neutral, PublicKeyToken=31bf3856ad364e35"

 traceOutputOptions="DateTime" filter="All"

 type="Microsoft.Practices.EnterpriseLibrary.Logging.

TraceListeners.XmlTraceListener,

Microsoft.Practices.EnterpriseLibrary.Logging, Version=4.0.0.0,

Culture=neutral, PublicKeyToken=31bf3856ad364e35"

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 32 (64
)

name="unprocessed" />

 <add fileName="trace-xml.svclog"

 listenerDataType="Microsoft.Practices.EnterpriseLibrary.Logging.

Configuration.XmlTraceListenerData,

Microsoft.Practices.EnterpriseLibrary.Logging, Version=4.0.0.0,

Culture=neutral, PublicKeyToken=31bf3856ad364e35"

traceOutputOptions="Timestamp" filter="All"

type="Microsoft.Practices.EnterpriseLibrary.Logging.

TraceListeners.XmlTraceListener,

Microsoft.Practices.EnterpriseLibrary.Logging, Version=4.0.0.0,

Culture=neutral, PublicKeyToken=31bf3856ad364e35"

name="XML Trace Listener" />

</listeners>

• Sadaļa formatters satur ziņojumu šablonus;

<formatters>

 <add template="Timestamp: {timestamp}
Message:

{message}
Category: {category}
Priority:

{priority}
EventId: {eventid}
Severity:

{severity}
Title:{title}
Machine:

{machine}
Thread Name: {threadName}
Extended

Properties: {dictionary({key} - {value}
)}"

type="Microsoft.Practices.EnterpriseLibrary.Logging.Formatters.

TextFormatter, Microsoft.Practices.EnterpriseLibrary.Logging,

Version=4.0.0.0, Culture=neutral,PublicKeyToken=31bf3856ad364e35"

 name="Text Formatter" />

</formatters>

• Sadaļa categorySources satur ziņojumu kategorijas un tām piesaistītos žurnalēšanas failus;

<categorySources>

 <add switchValue="All" name="Activity">

 <listeners>

 <add name="FlatFile TraceListener" />

 <add name="XML Trace Listener" />

 </listeners>

 </add>

 <add switchValue="All" name="General">

 <listeners>

 <add name="FlatFile TraceListener" />

 <add name="XML Trace Listener" />

 </listeners>

 </add>

 <add switchValue="All" name="Log">

 <listeners>

 <add name="FlatFile TraceListener" />

 <add name="XML Trace Listener" />

 </listeners>

 </add>

 <add switchValue="All" name="Trace">

 <listeners>

 <add name="FlatFile TraceListener" />

 <add name="XML Trace Listener" />

 </listeners>

 </add>

</categorySources>

• Sadaļa specialSources satur specifiskas ziņojumu kategorijas un tām piesaistītos

žurnalēšanas failus.

<specialSources>

 <allEvents switchValue="All" name="All Events" />

 <notProcessed switchValue="All" name="Unprocessed Category" />

 <errors switchValue="All" name="Logging Errors & Warnings">

<listeners>

 <add name="unprocessed" />

 </listeners>

 </errors>

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 33 (64
)

</specialSources>

</loggingConfiguration>

3.8. WCF Servisa un klienta trasēšana

Šajā piemērā tiks aprakstītas darbības, kas jāveic, lai piesaistītu esošam WCF servisam un klientam

aktivitāšu trasēšanas funkcionalitāti, izmantojot iebūvētās žurnalēšanas un trasēšanas funkcijas, kā

arī papildu ziņojumu žurnalēšanu ar Diagnostic.dll bibliotēku.

Izpildītais risinājuma piemērs uz kā balstīta šī instrukcija atrodams katalogā „~\Diagnostic\CS

WebService\ex01WCFActivity”.

3.8.1. Klienta konfigurācijas datne
Modificēt klienta konfigurācijas datni app.config, izmantojot WCF Configuration Editor vai manuāli

pievienojot šādus atribūtus:

• Sadaļu system.diagnostics kas satur sadaļas sharedListeners (pēc izvēles) un sources.

Sadaļā sharedListeners definējiet koplietojamos trasēšanas failus, norādot šādus atribūtus:

atrašanās vieta – initializeData, šajā gadījumā lietojuma katalogā, tips – type, identifikators –

name, papildus žurnalēšanas iespējas – traceOutputOptions un citi atribūti pēc

nepieciešamības;

<system.diagnostics>

 <sharedListeners>

 <add initializeData="app_tracelog.svclog"

 type="System.Diagnostics.XmlWriterTraceListener, System,

 Version=2.0.0.0, Culture=neutral,

 PublicKeyToken=b77a5c561934e089"

 name="ServiceModelTraceListener"

 traceOutputOptions="Timestamp">

 <filter type="" />

</add>

 </sharedListeners>

• Sadaļā sources definējiet ziņojumu klases source ar identifikatoriem name. Klasēm

piesaistiet vismaz vienu listeners failu, norādot kādu no koplietojamajiem failiem pēc tā

identifikatora name, vai definējot jaunu failu;

<sources>

 <source name="System.ServiceModel"

 switchValue="Information,ActivityTracing"

 propagateActivity="true">

<listeners>

 <add name="ServiceModelTraceListener">

 <filter type="" />

 </add>

</listeners>

 </source>

</sources>

• Sadaļā system.diagnostics definējiet atribūtu trace ar īpašību autoflush un vērtību true. Kas

norāda, ka rakstīšana failā tiks veikta uzreiz;

<trace autoflush="true" />

</system.diagnostics>

• Sadaļu system.serviceModel, kas satur sadaļas diagnostic, bindings un client. Sadaļā

diagnostic iespējojiet vai atspējojiet ziņojumu žurnalēšanas iespējas;

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 34 (64
)

<system.serviceModel>

 <diagnostics>

<messageLogging logEntireMessage="true"

 logMessagesAtTransportLevel="true" />

 </diagnostics>

• Sadaļā bindings uzstādiet servisa piesaistes konfigurāciju;

<bindings>

 <basicHttpBinding>

<binding name="BasicHttpBinding_IService1"

 closeTimeout="00:01:00" openTimeout="00:01:00"

 receiveTimeout="00:10:00" sendTimeout="00:01:00"

 allowCookies="false" bypassProxyOnLocal="false"

 hostNameComparisonMode="StrongWildcard"

 maxBufferSize="65536" maxBufferPoolSize="524288"

 maxReceivedMessageSize="65536"

 messageEncoding="Text" textEncoding="utf-8"

 transferMode="Buffered" useDefaultWebProxy="true">

 <readerQuotas maxDepth="32" maxStringContentLength="8192"

 maxArrayLength="16384" maxBytesPerRead="4096"

 maxNameTableCharCount="16384" />

 <security mode="None">

 <transport clientCredentialType="None"

 proxyCredentialType="None"

 realm="" />

 <message clientCredentialType="UserName"

 algorithmSuite="Default" />

 </security>

</binding>

 </basicHttpBinding>

</bindings>

• Sadaļā client piesaistiet servisu – adress un norādiet piesaistes tipu – binding un tā

konfigurāciju – bindingConfiguration.

<client>

 <endpoint address="http://localhost:64775/Service1.svc"

 binding="basicHttpBinding"

 bindingConfiguration="BasicHttpBinding_IService1"

 contract="ServiceRef.IService1"

 name="BasicHttpBinding_IService1" />

</client>

</system.serviceModel>

3.8.2. Servisa konfigurācijas datne
Modificējiet servisa konfigurācijas datni web.config, izmantojot WCF Configuration Editor vai manuāli

pievienojot šādus atribūtus:

• Sadaļu system.diagnostics kas satur sadaļas sharedListeners (pēc izvēles) un sources.

Sadaļā sharedListeners definējiet koplietojamos trasēšanas failus, norādot šādus atribūtus:

atrašanās vieta – initializeData, šajā gadījumā lietojuma katalogā, tips – type, identifikators –

name, papildus žurnalēšanas iespējas – traceOutputOptions un citi atribūti pēc

nepieciešamības;

<system.diagnostics>

 <sharedListeners>

 <add initializeData="Web_tracelog.svclog"

 type="System.Diagnostics.XmlWriterTraceListener, System,

 Version=2.0.0.0, Culture=neutral,

 PublicKeyToken=b77a5c561934e089"

 name="ServiceModelTraceListener"

 traceOutputOptions="Timestamp">

 <filter type="" />

</add>

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 35 (64
)

 </sharedListeners>

• Sadaļā sources definējiet ziņojumu klases source ar identifikatoriem name. Klasēm

piesaistiet vismaz vienu listeners failu, norādot kādu no koplietojamajiem failiem pēc tā

identifikatora name, vai definējot jaunu failu;

<sources>

 <source name="System.ServiceModel"

 switchValue="Information,ActivityTracing"

 propagateActivity="true">

<listeners>

 <add name="ServiceModelTraceListener">

 <filter type="" />

 </add>

</listeners>

 </source>

</sources>

• Sadaļā system.diagnostics definējiet atribūtu trace ar īpašību autoflush un vērtību true. Kas

norāda, ka rakstīšana failā tiks veikta uzreiz;

<trace autoflush="true" />

</system.diagnostics>

• Sadaļu system.serviceModel, kas satur sadaļas diagnostic, services un behaviors. Sadaļā

diagnostic iespējojiet vai atspējojiet ziņojumu žurnalēšanas iespējas;

<system.serviceModel>

 <diagnostics>

<messageLogging logEntireMessage="true"

 logMessagesAtTransportLevel="true" />

 </diagnostics>

• Sadaļā services uzstādiet servisa konfigurāciju;

<services>

 <service behaviorConfiguration="WcfService.Service1Behavior"

 name="WcfService.Service1">

<endpoint address="" binding="basicHttpBinding"

 bindingConfiguration=""

 contract="WcfService.IService1">

 <identity>

 <dns value="localhost" />

 </identity>

</endpoint>

 <endpoint address="mex" binding="mexHttpBinding"

 contract="IMetadataExchange" />

 </service>

</services>

• Sadaļā behaviors uzstādiet servisa konfigurāciju.

<behaviors>

 <serviceBehaviors>

<behavior name="WcfService.Service1Behavior">

 <serviceMetadata httpGetEnabled="true"/>

 <serviceDebug includeExceptionDetailInFaults="false"/>

</behavior>

 </serviceBehaviors>

</behaviors>

</system.serviceModel>

3.8.3. Žurnalēšana ar Diagnostic.dll
Trasējamības uzlabošanai tiek piesaistīta papildu žurnalēšana gan servisa, gan klienta pusē,

izmatojot LogUtility;

• Papildiniet konfigurācijas failus web.config un app.config;

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 36 (64
)

<!--for Diagnostic.dll logUtility-->

<source name ="Activity" switchValue="All">

<listeners>

 <add name="ServiceModelTraceListener"></add>

</listeners>

</source>

• Pievienojiet klienta un servisa risinājumiem Diagnostic.dll bibliotēku un atbilstošas

vārdtelpas;

• Izveidojiet žurnalēšanas metodes nepieciešamajās vietās gan servisa, gan klienta pusē;

LogUtility logWriter = new LogUtility("WCFService");

public string GetData(int value)

{

 logWriter.Write("Received value: " + value.ToString(), "Activity");

 System.Threading.Thread.Sleep(value);

 return string.Format("You entered: {0}", value);

}

logWriter.Write("Entered: " + i.ToString(), "Activity");

rez = c.GetData(i);

logWriter.Write("Response: " + rez, "Activity");

OutputTextBox.Text = rez;

3.8.4. Sinhrons servisa izsaukums
Sinhroni servisa izsaukumi var tikt automātiski apstrādāti bez papildu kodēšanas. Bet, lai

nodrošinātu korektu aktivitāšu atspoguļojumu, tiek izmantota LogActivity klases funkcionalitāte (skat.

11.attēls.).

private void SyncGetDataButton_Click(object sender, EventArgs e)

{

 int i;

 string rez;

 LogActivity la = LogActivity.CreateBoundedActivity();

 la.Start("SyncCall", "FromClient");

 using (ServiceRef.Service1Client c = new ServiceRef.Service1Client())

 {

 if (!int.TryParse(InputTextBox.Text, out i))

 {

 OutputTextBox.Text = "Ievadīt skaitli!";

 }

 else

 {

 logWriter.Write("Entered: " + i.ToString(), "Activity");

 rez = c.GetData(i);

 logWriter.Write("Response: " + rez, "Activity");

 OutputTextBox.Text = rez;

 }

 }

la.Stop();

}

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 37 (64
)

11.attēls. Sinhrona izsaukuma rezultāts

3.8.5. Asinhrons servisa izsaukums
Asinhrona servisa izsaukuma gadījumā nepieciešams izmantot LogActivity klases funkcionalitāti, lai

nodrošinātu korektas ziņojumu identifikatoru vērtības, izsaucot servisu un atiežoties no tā (skat.

12.attēlu). Metode AsyncGetDataButton_Click nodrošina asinhronu servisa izsaukumu:

private void AsyncGetDataButton_Click(object sender, EventArgs e)

{

 int i;

 LogActivity l = LogActivity.CreateAsyncActivity();

 using (LogActivity la = LogActivity.CreateBoundedActivity(l.Id))

 {

la.Start("AsyncCall", "FromClient");

if (!int.TryParse(InputTextBox.Text, out i))

{

 OutputTextBox.Text = "Ievadīt skaitli!";

}

else

{

 logWriter.Write("Async Entered: " + i.ToString(), "Activity");

 ServiceRef.Service1Client c = new ServiceRef.Service1Client();

 l.Suspend();

 c.GetDataAsync(Convert.ToInt32(this.InputTextBox.Text), l);

 c.GetDataCompleted += new EventHandler<ServiceRef.

 GetDataCompletedEventArgs>(c_GetDataCompleted);

}

 }

}

Metode c_GetDataCompleted nodrošina datu izvadi pēc izsaukuma izpildīšanas;

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 38 (64
)

private void c_GetDataCompleted(object sender, ServiceRef.GetDataCompletedEventArgs e)

{

LogActivity l = e.UserState as LogActivity;

l.Resume();

this.OutputTextBox.Text = e.Result;

logWriter.Write("Async Response: " + e.Result, "Activity", -1, -1,

System.Diagnostics.TraceEventType.Verbose, l.Id);

l.Stop();

}

12.attēls. Asinhrona izsaukuma rezultāts

3.9. Paplašinājumu bibliotēka IVIS.Diagnostics

Paplašinājuma funkcionalitātes piesaistīšana esošam projektam. Izpildītais risinājums uz kā balstīta

šī instrukcija, atrodams katalogā „~\Diagnostic\CS\WindowsApp\ex06Extensions”.

1. Atveriet projektu EnoughPI un iezīmējiet katalogu References, izpildot konteksta izvēlnes

komandu Add Reference, un pievienojiet projektam IVIS.Diagnostic.dll bibliotēku (tipiski

atrodama katalogā „~\Diagnostic\Lib”), kas satur izmantojamās paplašinājuma metodes.

2. Iezīmējiet projekta failu Calc\Calculator.cs un izpildiet konteksta izvēlnes komandu View Code;

3. Pievienojiet vārdtelpas Diagnostic un Ivis.Diagnostic faila augšdaļā;

using Diagnostic;

using IVIS.Diagnostics;

4. Modificējiet konfigurācijas datni app.config, pievienojot šādus atribūtus:

• Konfigurācijas sekciju diagnosticConfiguration;

<configSections>

<section name="diagnosticConfiguration"

 type="Diagnostic.Configuration.DiagnosticSettings,

 Diagnostic, Version=1.0.0.0"/>

</configSections>

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 39 (64
)

• Sadaļu diagnosticConfiguration

<diagnosticConfiguration type="Diagnostic.DefaultLogWriter, Diagnostic, Version=1.0.0.0" />

• Sadaļu system.diagnostics, kas satur sadaļas: sharedListeners (pēc izvēles) un sources.

Sadaļā sharedListeners definējiet koplietojamos žurnalēšanas failus, norādot šādus

atribūtus: atrašanās vieta – initializeData, šajā gadījumā lietojuma katalogā, tips – type,

identifikators – name, papildus žurnalēšanas iespējas – traceOutputOptions un citu atribūtus

pēc nepieciešamības;

<system.diagnostics>

<sharedListeners>

 <add initializeData="Notification.svclog"

 type="System.Diagnostics.XmlWriterTraceListener,

 System, Version=2.0.0.0, Culture=neutral,

 PublicKeyToken=b77a5c561934e089"

 name="NotificationLog"

 traceOutputOptions="Timestamp"/>

 <add initializeData="General.svclog"

 type="System.Diagnostics.XmlWriterTraceListener,

 System, Version=2.0.0.0, Culture=neutral,

 PublicKeyToken=b77a5c561934e089"

 name="GeneralLog"

 traceOutputOptions="Timestamp"/>

</sharedListeners>

• Sadaļā sources definējiet ziņojumu klases source ar atbilstošiem identifikatoriem name.

Katrai klasei piesaistiet vismaz vienu žurnalēšanas failu listeners, norādot kādu no

koplietojamajiem failiem pēc tā identifikatora name, vai definējot jaunu žurnalēšanas failu;

<sources>

 <source name="Notification" switchValue="All">

 <listeners>

 <add name="NotificationLog"/>

 </listeners>

 </source>

 <source name="Audit" switchValue="All">

 <listeners>

 <add name="AuditLog" />

 </listeners>

 </source>

</sources>

• Sadaļā system.diagnostics definējiet atribūtu trace ar īpašību autoflush un vērtību true. Kas

norāda, ka rakstīšana žurnalēšanas failā tiks veikta uzreiz.

<trace autoflush="true" />

</system.diagnostics>

5. Failā Calc\Calculator.cs izveidojiet LogUtility klases eksemplāru, klases Calculator ietvaros,

norādot atribūtu sourceName, kas tiks lietots ziņojumu avota identificēšanai, šajā gadījumā

projekta nosaukums EnoughPI;

LogUtility logwriter = new LogUtility("EnoughPI");

6. Nepieciešamajās vietās pievienojiet projekta kodam nepieciešamās rakstīšanas metodes.

Audita rakstīšanai:

protected void OnCalculated(CalculatedEventArgs args) {

logwriter.WriteAudit("Calculated", 1, string.Format("Calculation result is {0}", args.Pi));

}

 Paziņojumu rakstīšanai:

protected void OnCalculated(CalculatedEventArgs args) {

logwriter.SendUserNotification("01018133322", string.Format("Pi is {0}", args.Pi));

}

7. Iegūtais rezultāts apkopojot Audit un Notification žurnālus (skat. 13.attēls.).

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 40 (64
)

13.attēls. Ziņojumu un audita rezultāti

3.9.1. Notifikācijas servisa konfigurācija.
Lai sūtītu notifikācijas uz e-pastu, nevis, kā iepriekš demonstrēts, rakstītu datnēs, nepieciešams veikt

notifikācijas servisa konfigurēšanu un diagnostikas konfigurācijas sekciju papildināšanu:

1. Modificējiet konfigurācijas sadaļas diagnosticConfiguration atribūtu type;

 <diagnosticConfiguration type="IVIS.Diagnostics.IvisLogWriter, IVIS.Diagnostics"/>

2. Papildiniett sekcijas sources apakšsekciju listeners;

<source name="Notification" switchValue="All">

 <listeners>

<!-- Konfigurācija paziņojumu transformēšanai un sūtīšanai pa pastu -->

 <add transformationSchemaURN="URN:IVIS:100001:XSD-eServiceRegistry-eServiceRegistry-v1-0-

XSLT-EservRegis"

 defaultMessageTitle="MyDefaultTitle" initializeData="NotificationServiceV2"

 type="IVIS.Diagnostics.NotificationService2TraceListener, IVIS.Diagnostics"

 name="Notification2TraceListener">

 <filter type="" />

</add>

 </listeners>

</source>

3. Ja tiek izmantots .Net 3.5, pievienojiet sekciju system.serviceModel;

<system.serviceModel>

 <diagnostics>

<messageLogging logEntireMessage="true" logMalformedMessages="false"

 logMessagesAtServiceLevel="false" logMessagesAtTransportLevel="false" />

 </diagnostics>

 <bindings>

<customBinding>

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 41 (64
)

 <!-- .NET3.5 ivis tv -->

 <binding name="ws2007FederationNoSct">

 <security authenticationMode="IssuedTokenOverTransport"

messageSecurityVersion="WSSecurity11WSTrust13WSSecureConversation13WSSecurityPolicy12BasicSecurity

Profile10" requireSecurityContextCancellation="false">

 <issuedTokenParameters>

 <claimTypeRequirements>

 <add claimType="http://www.oasis-open.org/RSA2004/attributes/AUTHORITY"

isOptional="false"/>

 <add claimType="https://ivis.eps.gov.lv/schema/identity/claims/legalentity"

isOptional="false"/>

 <add claimType="http://docs.oasis-

open.org/wsfed/authorization/200706/claims/action" isOptional="false"/>

 <add

claimType="http://schemas.xmlsoap.org/ws/2005/05/identity/claims/privatepersonalidentifier"

isOptional="false" />

 </claimTypeRequirements>

 <issuer address="https://ivistv.abcsoftware.lv/PFAS/PFAS.STS/v1-

1/STS/Issue.svc/trust/13/certificatemixed" binding="ws2007HttpBinding"

bindingConfiguration="certificateMixed"/>

 <issuerMetadata address="https://ivistv.abcsoftware.lv/PFAS/PFAS.STS/v1-

1/STS/Issue.svc/mex"/>

 </issuedTokenParameters>

 <secureConversationBootstrap/>

 </security>

 <textMessageEncoding/>

 <httpsTransport/>

 </binding>

</customBinding>

<ws2007HttpBinding>

 <binding name="certificateMixed">

 <security mode="TransportWithMessageCredential">

 <message clientCredentialType="Certificate" establishSecurityContext="false"/>

 </security>

 </binding>

</ws2007HttpBinding>

 </bindings>

 <client>

<!-- .NET3.5 ivistv-->

<endpoint name="NotificationServiceV2"

address="https://ivistv.abcsoftware.lv/Notification/v2-0/ws2007FederationNoSct"

contract="NotificationService.INotificationServiceContract"

 binding="customBinding" bindingConfiguration="ws2007FederationNoSct"

behaviorConfiguration="certificate"/>

</client>

 <behaviors>

 <endpointBehaviors>

 <behavior name="certificate">

 <clientCredentials>

 <clientCertificate findValue="7d a6 83 cf 8b 85 9a 23 8f 26 c3 19 1a 98 fb 0c

e3 9f 60 12" storeLocation="LocalMachine" x509FindType="FindByThumbprint" />

 </clientCredentials>

 </behavior>

 </endpointBehaviors>

</behaviors>

</system.serviceModel>

4. Ja tiek izmantots .Net 4.0 vai jaunāks, pievienojiet sekciju system.serviceModel;

<system.serviceModel>

 <diagnostics>

 <!-- Nomainīt vērtības uz true, lai veiktu servisa logu rakstīšanu-->

 <messageLogging logEntireMessage="false" logMessagesAtTransportLevel="false"

logMalformedMessages="false"/>

 </diagnostics>

 <bindings>

 <!-- .NET4.0 ivistv -->

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 42 (64
)

 <ws2007FederationHttpBinding>

 <binding name="ws2007FederationNoSct">

 <security mode="TransportWithMessageCredential">

 <message establishSecurityContext="false">

 <claimTypeRequirements>

 <add claimType="http://www.oasis-

open.org/RSA2004/attributes/AUTHORITY" isOptional="false"/>

 <add

claimType="https://ivis.eps.gov.lv/schema/identity/claims/legalentity" isOptional="false"/>

 <add claimType="http://docs.oasis-

open.org/wsfed/authorization/200706/claims/action" isOptional="false"/>

 <add

claimType="http://schemas.xmlsoap.org/ws/2005/05/identity/claims/privatepersonalidentifier"

isOptional="false" />

 </claimTypeRequirements>

 <issuer address="https://ivistv.abcsoftware.lv/PFAS/PFAS.STS/v1-

1/STS/Issue.svc/trust/13/certificatemixed" binding="ws2007HttpBinding"

bindingConfiguration="certificateMixed"/>

 <issuerMetadata

address="https://ivistv.abcsoftware.lv/PFAS/PFAS.STS/v1-1/STS/Issue.svc/mex"/>

 </message>

 </security>

 </binding>

 </ws2007FederationHttpBinding>

 <ws2007HttpBinding>

 <binding name="certificateMixed">

 <security mode="TransportWithMessageCredential">

 <message clientCredentialType="Certificate"

establishSecurityContext="false"/>

 </security>

 </binding>

 </ws2007HttpBinding>

 </bindings>

 <client>

 <!-- .NET4.0 ivistv -->

 <endpoint name="NotificationServiceV2"

 address="https://ivistv.abcsoftware.lv/Notification/v2-

0/ws2007FederationNoSct"

 contract="NotificationService.INotificationServiceContract"

 binding="ws2007FederationHttpBinding"

 bindingConfiguration="ws2007FederationNoSct"

 behaviorConfiguration="certificate"

 />

 </client>

 <behaviors>

 <endpointBehaviors>

 <behavior name="certificate">

 <clientCredentials>

 <clientCertificate findValue="7d a6 83 cf 8b 85 9a 23 8f 26 c3 19 1a 98 fb

0c e3 9f 60 12" storeLocation="LocalMachine" x509FindType="FindByThumbprint" />

 </clientCredentials>

 </behavior>

 </endpointBehaviors>

 </behaviors>

 </system.serviceModel>

5. Importējiet sertifikātu „~\Diagnostic\Certificates\ex06Extensions.pfx” norādot paroli „123”. Ja

nepieciešams, izmantot citu sertifikātu, modificējiet sekciju system.serviceModel / behaviors

/ endpointBehaviors / behavior / clientCredentials / clientCertificate.

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 43 (64
)

4. Diagnostic sekcijas konfigurācija VISS vidēm –

instrukcija administratoriem

4.1. Konfigurācijas varianti atkarībā no vides

Diagnostikas konfigurācijā mainās atkarība no vides. Paredzēti divi varianti

• izstrāde un testēšana;

• VDAA vide.

Izstrādei un testiem logošana, notifikācijas un audits tiek rakstīti failos.

VDAA vidē logi tiek rakstīti sistēmas žurnālā datubāzē, audits tiek rakstīts audita datubāzē,

notifikācijas izmanto notifikācijas servisu. Iespējams, diagnostiku rakstīt asinhronā veidā, izmantojot

Enterprice Library un rindas (MSMQ un RabbitMQ). Papildus monitoringa programmatūrai

iespējams konfigurēt kļūdu rakstīšanu uz windows Event Viewer.

App

Development VISS infrastructure

Abc.Diagnostics.dll

IVIS.Diagnostics.dll

Notification V2.0

SystemJournal V2.0

Audit V2.0

Notification V1.0

File

Queue Event viewer

Monitoring
software

Distributor

Asynhronous Monitoring

14.attēls. Konfigurācijas varianti atkarība no vides

4.2. Konfigurācija izstrādes un testēšanas vidēm

4.2.1. Konfigurācija izmantojot System.Diagnostics
Konfigurējiet sekcijas lietojuma konfigurācijas datnē:

<configSections>

 <section name="diagnosticConfiguration"

type="Abc.Diagnostics.Configuration.DiagnosticSettings, Abc.Diagnostics, Version=1.2.0.0"/>

</configSections>

Izmantojiet Abc.Diagnostics.DefaultLogWriter, lai rakstītu XML formāta:

<diagnosticConfiguration type="Abc.Diagnostics.DefaultLogWriter, Abc.Diagnostics"

defaultCategory="category" />

Izmantojiet System.Diagnostics.XmlWriterTraceListener, lai rakstītu failā:

<system.diagnostics>

 <sources>

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 44 (64
)

 <source name="category" switchValue="All">

 <listeners>

 <add name="listener" initializeData="trace.svclog"

type="System.Diagnostics.XmlWriterTraceListener, System.Diagnostics" />

 </listeners>

 </source>

 </sources>

</system.diagnostics>

4.2.2. Konfigurācija izmantojot microsoft enterprise library
Konfigurējiet sekcijas lietojuma konfigurācijas datnē:

<configSections>

 <section name="diagnosticConfiguration"

type="Abc.Diagnostics.Configuration.DiagnosticSettings, Abc.Diagnostics, Version=1.2.0.0"/>

 <section name="loggingConfiguration"

type="Microsoft.Practices.EnterpriseLibrary.Logging.Configuration.LoggingSettings,

Microsoft.Practices.EnterpriseLibrary.Logging, Version=4.0.0.0, Culture=neutral,

PublicKeyToken=31bf3856ad364e35"/>

 <section name="dataConfiguration"

type="Microsoft.Practices.EnterpriseLibrary.Data.Configuration.DatabaseSettings,

Microsoft.Practices.EnterpriseLibrary.Data, Version=4.0.0.0, Culture=neutral,

PublicKeyToken=31bf3856ad364e35"/>

</configSections>

Izmantojiet žurnāla rakstītāju saskaņā ar zemāk redzamo tabulu

 ENTRLIB VERSION TYPE

 V3.0 Abc.Diagnostics.EntrLib30LogWriter

 V4.0 Abc.Diagnostics.EntrLib40LogWriter

 V5.0, V5.0 Upd 1 Abc.Diagnostics.EntrLib50LogWriter

 V6.0 Abc.Diagnostics.EntrLib60LogWriter

<diagnosticConfiguration type="Abc.Diagnostics.EntrLib40LogWriter, Abc.Diagnostics"/>

Konfigurējiet Microsoft Enterprise Library bibliotēkas sadaļu. Izmantojiet

Microsoft.Practices.EnterpriseLibrary.Logging.TraceListeners.XmlTraceListener, lai rakstītu failā.

<loggingConfiguration name="Logging Application Block" defaultCategory="category">

 <listeners>

 <add name="listener"

type="Microsoft.Practices.EnterpriseLibrary.Logging.TraceListeners.XmlTraceListener,

Microsoft.Practices.EnterpriseLibrary.Logging"/>

 </listeners>

 <categorySources>

 <add name="category" switchValue="All">

 <listeners>

 <add name="listener"/>

 </listeners>

 </add>

 </categorySources>

</loggingConfiguration>

4.2.3. Konfigurācija, izmantojot Serilog
Serilog izmantošanas apraksts žurnalēšanas rakstīšanai datnē ir dots 4.3.5. sadaļā.

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 45 (64
)

4.3. Konfigurācija sekcijas lietojumā - Konfigurācija VISS vidē

Konfigurējiet sekcijas lietojuma konfigurācijas datnē:

<configSections>

 <section name="diagnosticConfiguration"

type="Abc.Diagnostics.Configuration.DiagnosticSettings, Abc.Diagnostics, Version=1.2.0.0"/>

</configSections>

Izmantojiet IVIS.Diagnostics.IvisLogWriter, lai rakstītu VISS infrastruktūras formātā:

<diagnosticConfiguration type="IVIS.Diagnostics.IvisLogWriter, IVIS.Diagnostics"/>

4.3.1. Sistēmas žurnāls V1 (atcelts)
Sekcijā connectionStrings pievienojiet elementu add ar nosaukumu LogConnectionString un

norādiet savienojuma rindu pie Log datubāzes.

<connectionStrings>

 <add name="LogConnectionString" connectionString="{$connectionStringToLogDatabase}"

providerName="System.Data.SqlClient" />

</connectionStrings>

Sekcijā system.diagnostics pievienojiet elementu source un norādiet vērtību swithValue. Pie source

elementa pievienojiet LogTraceListener un norādiet parametru ApplicationIdentity.

<system.diagnostics>

 <sources>

 <source name="{$LogName}" switchValue="{$LogSwitchValue}">

 <listeners>

 <add name="LogTraceListener" type="IVIS.Diagnostics.LogDatabaseTraceListener,

IVIS.Diagnostics" initializeData="LogConnectionString"

applicationIdentity="{$ApplicationIdenttity}"/>

 </listeners>

 </source>

 </sources>

</system.diagnostics>

4.3.2. Sistēmas žurnāls V2
Sekcijā connectionStrings pievienojiet elementu add ar nosaukumu

SystemJournalConnectionString un norādiet savienojuma rindu pie SystemJournal datubāzes.

<connectionStrings>

 <add name="SystemJournalConnectionString"

connectionString="{$connectionStringToSystemJournalDatabase}"

providerName="System.Data.SqlClient" />

</connectionStrings>

Sekcijā system.diagnostics pievienojiet elementu source un norādiet atribūtam vērtību swithValue.

Pie source elementa pievienojiet SystemJournalTraceListener un norādiet parametru

ApplicationIdentity.

<system.diagnostics>

 <sources>

 <source name="{$LogName}" switchValue="{$LogSwitchValue}">

 <listeners>

 <add name="SystemJournalTraceListener"

type="IVIS.Diagnostics.SystemJournalDatabaseTraceListener, IVIS.Diagnostics"

initializeData="SystemJournalConnectionString" applicationIdentity="{$ApplicationIdenttity}"/>

 </listeners>

 </source>

 </sources>

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 46 (64
)

</system.diagnostics>

4.3.3. Audits V1
Sekcijā connectionStrings pievienojiet elementu add ar nosaukumu DAIRMConnectionString un

norādiet savienojuma rindu pie DAIRM datubāzes.

<connectionStrings>

 <add name="DAIRMConnectionString" connectionString="{$connectionStringToDairmDatabase}"

providerName="System.Data.SqlClient" />

</connectionStrings>

Sekcijā system.diagnostics pievienojiet elementu source ar nosaukumu Audit un norādiet vērtību

swithValue uz All.

Pie source elementa pievienojiet AuditDatabaseTraceListener un norādiet parametru

ApplicationIdentity.

<system.diagnostics>

 <sources>

 <source name="Audit" switchValue="All">

 <listeners>

 <add name="AuditDatabaseTraceListener"

type="IVIS.Diagnostics.AuditDatabaseTraceListener, IVIS.Diagnostics"

initializeData="DAIRMConnectionString" applicationIdentity="{$ApplicationIdentity}"/>

 </listeners>

 </source>

 </sources>

</system.diagnostics>

4.3.4. Audits V2
Sekcijā connectionStrings pievienojiet elementu add ar nosaukumu DAIRM2ConnectionString un

norādiet savienojuma rindu pie DAIRM v2 datubāzes.

<connectionStrings>

 <add name="DAIRM2ConnectionString" connectionString="{$connectionStringToDairm2Database}"

providerName="System.Data.SqlClient" />

</connectionStrings>

Sekcijā system.diagnostics pievienojiet elementu source ar nosaukumu Audit un norādiet vērtību

swithValue uz All.

Pie source elementa pievienojiet DairmDatabaseTraceListener un norādiet parametru

ApplicationIdentity.

<system.diagnostics>

 <sources>

 <source name="Audit" switchValue="All">

 <listeners>

 <add name="DairmDatabaseTraceListener"

type="IVIS.Diagnostics.DairmDatabaseTraceListener, IVIS.Diagnostics"

initializeData="DAIRM2ConnectionString" applicationIdentity="{$ApplicationIdentity}"/>

 </listeners>

 </source>

 </sources>

</system.diagnostics>

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 47 (64
)

4.3.5. Audits ar Serilog

4.3.5.1. Jauna lietojuma izstrāde vai esoša, kas izmanto Abc.Diagnostics
v1.2.x bibliotēkas, pārkonfigurēšana

Lai rakstītu auditu RabbitMQ rindā, izmantojot Serilog, lietojumi jāveido vai jāpārkonfigurē vismaz uz

.Net 4.5.2 versiju.

Audita rakstīšanai uz rindu tiek izmantota RabbitMQ.Client.dll bibliotēka, bet tā var tikt izmantota arī

citu funkciju nodrošināšanai, piemēram kontrolieru datu apmaiņai. Šādās situācijas, kad projekts jau

satur šo bibliotēku, ir jāsazinās ar komponentes izstrādātāju pirms to aizstāt ar jaunāku vai vecāku

versiju un jāveic notikumu maršrutēšanas konfigurēšana.

Lai pieslēgtu lietojumam auditu ir nepieciešams izmantot aktuālākās bibliotēku versijas, bet jāņem

vērā to savstarpējās atkarības. Lai atvieglotu bibliotēku savstarpējo atkarību risināšanu var izmantot

rīku NuGetPackageExplorer, skatīt

https://github.com/NuGetPackageExplorer/NuGetPackageExplorer.

Audita rakstīšanai ir nepieciešamas šādas bibliotēkas:

Diagnostikas bibliotēkas:

• Abc.Diagnostics versija v1.2.6 vai jaunāka (Install-Package Abc.Diagnostics -Version 1.2.6 -

Source https://nexus.vraa.gov.lv/repository/eservices-nuget/)

• Ivis.Diagnostics v1.2.4 vai jaunāka. (Install-Package Ivis.Diagnostics -Version 1.2.4 -Source

https://nexus.vraa.gov.lv/repository/eservices-nuget/)

• Viss.Diagnostics.Serilog.dll v1.2.1 vai jaunāka (Install-Package Viss.Diagnostics.Serilog -

Version 1.2.1 -Source https://nexus.vraa.gov.lv/repository/eservices-nuget/)

Zemāk uzskaitītas atkarības – instalējot Viss.Diagnostics.Serilog no nuget tiks pievienotas

automātiski:

1. Serilog.dll (piemēram, Install-Package Serilog -Version 2.9.0 -Source

https://www.nuget.org/api/v2/)

2. Serilog.Settings.AppSettings.dll (piemēram, Install-Package

Serilog.Settings.AppSettings -Version 2.2.2 -Source https://www.nuget.org/api/v2/)

Rakstīšanai datnē, izmantojot Serilog, nepieciešams pievienot:

• Serilog.Sinks.File.dll (piemēram, Install-Package Serilog.Sinks.File -Version 4.1.0 -Source
https://www.nuget.org/api/v2/)

Ziņojumu filtrēšanai pirms audita ierakstīšanas ir nepieciešama bibliotēka:

• Serilog.Expressions.dll (piemēram, Install-Package Serilog.Filters.Expressions -Version 3.4.0
-Source https://www.nuget.org/api/v2/)

Rakstīšanai RabbitMQ rindā ir nepieciešamas bibliotēkas:

• Serilog.Sinks.RabbitMQ.dll (piemēram, Install-Package Serilog.Sinks.RabbitMQ -Version 6.1.0-
with-audit03 -Source https://nexus.vraa.gov.lv/repository/eservices-nuget/)

Zemāk uzskaitītās atkarības – instalējot Serilog.Sinks.RabbitMQ no nuget tiks pievienotas
automātiski:

1. RabbitMQ.Client.dll (piemēram, Install-Package RabbitMQ.Client -Version 6.0.0 -Source
https://www.nuget.org/api/v2/)

https://github.com/NuGetPackageExplorer/NuGetPackageExplorer
https://nexus.vraa.gov.lv/repository/eservices-nuget/
https://www.nuget.org/api/v2/
https://www.nuget.org/api/v2/
https://nexus.vraa.gov.lv/repository/eservices-nuget/

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 48 (64
)

2. Serilog.Sinks.PeriodicBatching.dll (piemēram, Install-Package
Serilog.Sinks.PeriodicBatching -Version 2.3.1 -Source https://www.nuget.org/api/v2/)

Pievienojot bibliotēkas no NuGet repozitorijiem, mainīsies arī app.config/web.config datne.
Norādītās bibliotēku versijas ir aktuālas apraksta veidošanas brīdī. Patstāvīgi instalējot pakotnes ir
jāievēro to savstarpējās versiju atkarības, un katrai no tām nepieciešamā .Net ietvara atkarības.

Audita rakstīšanai jāizmanto Metode „WriteAudit”, skat. 2.4.2.1.3. paragrāfu.

Lietojuma konfigurēšanu rakstīšanai rindā vai datnēs skatīt nākamajās nodaļās.

4.3.5.2. Lietojuma konfigurēšana audita rakstīšanai datnē ar Serilog

Sekcijā configSections pievienojiet elementu ar nosaukumu diagnosticConfiguration.

<configSections>

 <section name="diagnosticConfiguration"

type="Abc.Diagnostics.Configuration.DiagnosticSettings, Abc.Diagnostics"/>

</configSections>

Aizvietojiet elementu diagnosticConfiguration, piemēram:

<diagnosticConfiguration type="IVIS.Diagnostics.IvisLogWriter, IVIS.Diagnostics"/>

ar elementu diagnosticConfiguration:

<diagnosticConfiguration type="Viss.Diagnostics.Serilog.VissSerilogWriter,

Viss.Diagnostics.Serilog" />

Sekcijā appSettings, norādiet parametrus Serilog bibliotēkai (https://github.com/serilog/serilog-

settings-appsettings):

<appSettings>

 <add key="serilog:using:File" value="Serilog.Sinks.File" />

 <add key="serilog:audit-to:File.path" value="c:\Logs\cfg-audit.json" />

 <add key="serilog:audit-to:File.formatter" value="Viss.Diagnostics.Serilog.JsonFormatter,

Viss.Diagnostics.Serilog" />

 </appSettings>

Auditējamo ziņojumu filtrēšanai pirms ierakstīšanas, konfigurācijai pievienojiet parametrus:

<appSettings>

 <add key="serilog:using:FilterExpressions" value="Serilog.Expressions" />

 <add key="serilog:filter:ByIncludingOnly.expression" value="@Properties['auditLogEntry'] is

not null"/>

 </appSettings>

Minētajā piemērā aizvietojot is not null ar is null audita ieraksta datne tiks izveidota, bet rindā un

datnē audita notikumi netiks ierakstīti, jo tie neatbildīs norādītajam kritērijam.

4.3.5.3. Lietojuma konfigurēšana audita rakstīšana RabbitMQ rindā

Lai rakstītu auditu RabbitMQ rindā, lietotnei ir jāizmanto vismaz .Net 4.6.1 ietvars.

Sekcijā configSections pievienojiet elementu ar nosaukumu diagnosticConfiguration.

<configSections>

 <section name="diagnosticConfiguration"

type="Abc.Diagnostics.Configuration.DiagnosticSettings, Abc.Diagnostics"/>

</configSections>

Aizvietojiet elementu diagnosticConfiguration, piemēram:

<diagnosticConfiguration type="IVIS.Diagnostics.IvisLogWriter, IVIS.Diagnostics"/>

ar elementu diagnosticConfiguration:

<diagnosticConfiguration type="Viss.Diagnostics.Serilog.VissSerilogWriter,

Viss.Diagnostics.Serilog" />

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 49 (64
)

Ir jāpapildina sekciju appSettings ar RabbitMQ rindas parametriem:

<appSettings>

 <add key="serilog:using:RabbitMQ" value="Serilog.Sinks.RabbitMQ"/>

 <add key="serilog:audit-to:RabbitMQ.hostname" value="host.abc"/>

 <add key="serilog:audit-to:RabbitMQ.vHost" value="rabbitHostName"/>

 <add key="serilog:audit-to:RabbitMQ.username" value="dairm2"/>

 <add key="serilog:audit-to:RabbitMQ.password" value="fTr%45^YR&^4"/>

 <add key="serilog:audit-to:RabbitMQ.exchange" value="dairm2_exchange_name"/>

 <add key="serilog:audit-to:RabbitMQ.formatter"

value="Viss.Diagnostics.Serilog.JsonFormatter, Viss.Diagnostics.Serilog"/>

</appSettings>

Sīkāku parametru aprakstu var atrast https://github.com/gekiss/serilog-sinks-

rabbitmq/blob/master/README.md

Ja nokonfigurējāt audita rakstīšanu arī datnē atbilstoši iepriekš aprakstītajam, tad tagad audits tiks

rakstīts gan datnē, gan arī RabbitMQ.

4.3.5.3.1. TLS pieslēguma konfigurācija

Aktivizējot TLS pieslēgumu sekcijā appSettings jāpieliek parametrus:

<appSettings>

 ...

 <add key="serilog:audit-to:RabbitMQ.sslEnabled" value="true"/>

</appSettings>

Atkarīgi no izmantojamā TLS sertifikāta un porta jāpieliek nepieciešamos parametrus:

<appSettings>

 ...

 <add key="serilog:audit-to:RabbitMQ.sslServerName" value="host.abc"/>

 <add key="serilog:audit-to:RabbitMQ.sslVersion" value="Tls3"/>

 <add key="serilog:audit-to:RabbitMQ.sslAcceptablePolicyErrors" value="None"/>

 <add key="serilog:audit-to:RabbitMQ.sslCheckCertificateRevocation" value="false"/>

</appSettings>

Parametru apraksts:

• sslEnabled – norāda ka izmanto TLS pieslēgušu;

• sslServerName – servera nosaukums (CA);

• sslAcceptablePolicyErrors – pielaupāmas kļūdas. Enum SslPolicyErrors.

https://learn.microsoft.com/en-us/dotnet/api/system.net.security.sslpolicyerrors;
• sslVersion – pieļaujamie protokoli. Enum SslProtocols.

https://learn.microsoft.com/en-
us/dotnet/api/system.security.authentication.sslprotocols ;

• sslCheckCertificateRevocation – norāda ka pārbaudīt sertifikātā atcelšanu.

4.3.5.4. Žurnalēšanas notikumu maršrutēšana

Izmantojot RoutedLogWriter iespējams nokonfigurēt lietojumu, lai notikumus no dažādām

kategorijām, piemēram, Audit, Log, Error, General apstrādā dažādi rakstītāji, piemēram,

LogFlatFileTraceListener, XmlWriterTraceListener vai citi.

Sekcijā configSections pievienojiet elementu ar nosaukumu diagnosticConfiguration.

<configSections>

 <section name="diagnosticConfiguration"

type="Abc.Diagnostics.Configuration.DiagnosticSettings, Abc.Diagnostics"/>

</configSections>

Aizvietojiet elementu diagnosticConfiguration, piemēram:

https://learn.microsoft.com/en-us/dotnet/api/system.net.security.sslpolicyerrors
https://learn.microsoft.com/en-us/dotnet/api/system.security.authentication.sslprotocols
https://learn.microsoft.com/en-us/dotnet/api/system.security.authentication.sslprotocols

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 50 (64
)

<diagnosticConfiguration type="IVIS.Diagnostics.IvisLogWriter, IVIS.Diagnostics"/>

ar šādu elementu diagnosticConfiguration, norādot nepieciešamos filtrus, piemēram:

<diagnosticConfiguration type="Abc.Diagnostics.RoutedLogWriter, Abc.Diagnostics">

 <filters>

 <filter categories="Audit" type="Viss.Diagnostics.Serilog.VissSerilogWriter,

Viss.Diagnostics.Serilog" applicationIdentity="testing.app.my"/>

 <filter categories="Log" type="IVIS.Diagnostics.IvisLogWriter, IVIS.Diagnostics"/>

 <filter categories="Audit,*" type="Abc.Diagnostics.DefaultLogWriter, Abc.Diagnostics"/>

 </filters>

</diagnosticConfiguration>

Šāda konfigurācija nosaka, ka:

• Notikumi no kategorijas Audit tiks rakstīti izmantojot Serilog uz rindu vai datnē;

• Notikumus no kategorijas Log būs iespējams apstrādāt ar kādu no IVIS.Diagnostics

nodrošinātajiem rakstītājiem:

o SystemJournalDatabaseTraceListener – sistēmas žurnāla rakstīšana SQL datu bāzē;

o LogEventLogTraceListener – notikumu rakstīšana event logā;

o LogFlatFileTraceListener – notikumu rakstīšana teksta datnē;

o NotificationService2TraceListener – notifikāciju sūtīšana;

o u.c.

• Notikumus no kategorijas Audit un visām citām iepriekš nenorādītajām kategorijām varēs

apstrādāt ar kādu no šiem rakstītājiem:

o System.Diagnostics.XmlWriterTraceListener – notikumu rakstīšana svclog datnēs;

o u.c.

4.3.5.4.1. Konfigurācijas un koda piemērs:

Konsoles lietojumam pievainotas šādas bibliotēkas:

<packages>
 <package id="Abc.Diagnostics" version="1.2.6" targetFramework="net461" />
 <package id="Ivis.Diagnostics" version="1.2.4" targetFramework="net461" />
 <package id="RabbitMQ.Client" version="6.0.0" targetFramework="net461" />
 <package id="Serilog" version="2.9.0" targetFramework="net461" />
 <package id="Serilog.Expressions" version="3.4.0" targetFramework="net461" />
 <package id="Serilog.Settings.AppSettings" version="2.2.2" targetFramework="net461" />
 <package id="Serilog.Sinks.File" version="4.1.0" targetFramework="net461" />
 <package id="Serilog.Sinks.PeriodicBatching" version="2.2.1" targetFramework="net461" />
 <package id="Serilog.Sinks.RabbitMQ" version="6.1.0-with-audit03" targetFramework="net461" />
 <package id="Viss.Diagnostics.Serilog" version="1.2.1" targetFramework="net461" />

</packages>

Konsoles lietojuma kods – veic notikumu rakstīšanu Audit, Log un General kategorijās:

 Abc.Diagnostics.DiagnosticTools.LogUtil.WriteAudit("test.new.net.audit.action", "Audits
no .net 4.6.1 lietojuma " + DateTime.Now.ToString(), -1, null, null, "Audit.test.App");
 Abc.Diagnostics.DiagnosticTools.LogUtil.Write("test log msg " +
DateTime.Now.ToString(), "Log", 1, -1, System.Diagnostics.TraceEventType.Error, null,
Guid.NewGuid());

 Abc.Diagnostics.DiagnosticTools.LogUtil.Write("test General msg " +

DateTime.Now.ToString(), "General", 1, -1, System.Diagnostics.TraceEventType.Error, null,

Guid.NewGuid());

Konsoles lietojuma konfigurācija:

<configuration>
 <configSections>
 <section name="diagnosticConfiguration"
type="Abc.Diagnostics.Configuration.DiagnosticSettings, Abc.Diagnostics"/>
 </configSections>

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 51 (64
)

 <diagnosticConfiguration type="Abc.Diagnostics.RoutedLogWriter, Abc.Diagnostics">
 <filters>
 <filter categories="Audit" type="Viss.Diagnostics.Serilog.VissSerilogWriter,
Viss.Diagnostics.Serilog" applicationIdentity="testing.app.my"/>
 <filter categories="Log" type="IVIS.Diagnostics.IvisLogWriter, IVIS.Diagnostics"/>
 <filter categories="Audit,*" type="Abc.Diagnostics.DefaultLogWriter,
Abc.Diagnostics"/>
 </filters>
 </diagnosticConfiguration>

 <appSettings>
 <add key="serilog:using:RabbitMQ" value="Serilog.Sinks.RabbitMQ"/>
 <add key="serilog:audit-to:RabbitMQ.hostname" value="ivis-2k11.abc"/>
 <add key="serilog:audit-to:RabbitMQ.vHost" value="testRabbitHost"/>
 <add key="serilog:audit-to:RabbitMQ.username" value="user123"/>
 <add key="serilog:audit-to:RabbitMQ.password" value="password123"/>
 <add key="serilog:audit-to:RabbitMQ.exchange" value="DAIRM2Exchange"/>
 <add key="serilog:audit-to:RabbitMQ.formatter"
value="Viss.Diagnostics.Serilog.JsonFormatter, Viss.Diagnostics.Serilog"/>
 </appSettings>

 <system.diagnostics>
 <trace autoflush="true"/>
 <sources>
 <source name="Audit" switchValue="All">
 <listeners>
 <add name="AuditXmlTraceListener"/>
 </listeners>
 </source>

 <source name="Log" switchValue="All">
 <listeners>
 <add name="LogListener" type="IVIS.Diagnostics.LogFlatFileTraceListener,
IVIS.Diagnostics" initializeData="log.txt" />
 </listeners>
 </source>

 <source name="General" switchValue="All">
 <listeners>
 <add name="LogListener" type="System.Diagnostics.XmlWriterTraceListener"
initializeData="general.svclog" />
 </listeners>
 </source>
 </sources>
 <sharedListeners>
 <add name="AuditXmlTraceListener" type="System.Diagnostics.XmlWriterTraceListener"
traceOutputOptions="DateTime" initializeData="viss_audit.svclog"/>
 </sharedListeners>
 </system.diagnostics>

</configuration>

4.3.5.5. Papildu auditējamie parametri

Atkarībā no lietotnes realizācijas platformas, Serilog bibliotēkai ir iespējams norādīt auditā iekļaut

papildu parametrus:

• Kopējie (https://github.com/serilog/serilog-enrichers-environment,

https://github.com/serilog/serilog-enrichers-thread, https://github.com/serilog/serilog-

enrichers-process);

• ASP.NET (https://github.com/serilog-web/classic);

• MVC (https://github.com/serilog-web/classic-mvc);

• WebApi (https://github.com/serilog-web/classic-webapi);

• ASPNetCore (https://github.com/serilog/serilog-aspnetcore).

https://github.com/serilog/serilog-enrichers-environment
https://github.com/serilog/serilog-enrichers-thread
https://github.com/serilog-web/classic
https://github.com/serilog-web/classic-mvc
https://github.com/serilog-web/classic-webapi
https://github.com/serilog/serilog-aspnetcore

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 52 (64
)

Kopējie iespējamie parametri:

<appSettings>

 <add key="serilog:using:Process" value="Serilog.Enrichers.Process"/>

 <add key="serilog:using:Thread" value="Serilog.Enrichers.Thread"/>

 <add key="serilog:using:Environment" value="Serilog.Enrichers.Environment"/>

 <add key="serilog:enrich:WithProcessId"/>

 <add key="serilog:enrich:WithProcessName"/>

 <add key="serilog:enrich:WithThreadId"/>

 <add key="serilog:enrich:WithMachineName"/>

 <add key="serilog:enrich:WithEnvironmentUserName"/>

</appSettings>

ASP.NET iespējamie parametri:

<appSettings>

 <add key="serilog:using:SerilogWeb.Classic" value="SerilogWeb.Classic"/>

 <add key="serilog:enrich:WithClaimValue.claimProperty" value="MyClaimPropertyName"/>

 <add key="serilog:enrich:WithHttpRequestClientHostIP"/>

 <add key="serilog:enrich:WithHttpRequestClientHostName"/>

 <add key="serilog:enrich:WithHttpRequestId"/>

 <add key="serilog:enrich:WithHttpRequestNumber"/>

 <add key="serilog:enrich:WithHttpRequestRawUrl"/>

 <add key="serilog:enrich:WithHttpRequestTraceId"/>

 <add key="serilog:enrich:WithHttpRequestType"/>

 <add key="serilog:enrich:WithHttpRequestUrl"/>

 <add key="serilog:enrich:WithHttpRequestUrlReferrer"/>

 <add key="serilog:enrich:WithHttpRequestUserAgent"/>

 <add key="serilog:enrich:WithHttpSessionId"/>

 <add key="serilog:enrich:WithUserName"/>

</appSettings>

MVC iespējamie parametri:

<appSettings>

 <add key="serilog:using:SerilogWeb.Classic.Mvc" value="SerilogWeb.Classic.Mvc"/>

 <add key="serilog:enrich:WithMvcActionName"/>

 <add key="serilog:enrich:WithMvcControllerName"/>

 <add key="serilog:enrich:WithMvcRouteData"/>

 <add key="serilog:enrich:WithMvcRouteTemplate"/>

</appSettings>

WebApi iespējamie parametri:

<appSettings>

 <add key="serilog:using:SerilogWeb.Classic.WebApi" value="SerilogWeb.Classic.WebApi"/>

 <add key="serilog:enrich:WithWebApiActionName" />

 <add key="serilog:enrich:WithWebApiControllerName" />

 <add key="serilog:enrich:WithWebApiRouteData" />

 <add key="serilog:enrich:WithWebApiRouteTemplate" />

</appSettings>

Pievienojiet bibliotēku:

• SerilogWeb.Classic (Install-Package SerilogWeb.Classic -Version 4.2.42 -Source

https://www.nuget.org/api/v2/)

un norādiet papildu parametrus ASP.NET lietotnes konfigurācijā:

<appSettings>

 <add key="serilog:using:SerilogWeb.Classic" value="SerilogWeb.Classic"/>

 <add key="serilog:enrich:WithHttpRequestClientHostIP"/>

 <add key="serilog:enrich:WithHttpRequestUserAgent"/>

</appSettings>

Tiek iegūts RabbitMQ Serilog audita ziņojums, ja tiek izmantota tīmekļa lietotne, piemēram:

{

 "Timestamp": "2018-09-26T07:51:52.1919403Z",

 "MessageTemplate": "",

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 53 (64
)

 "Level": "Information",

 "Properties": {

 "messageId": "cbe531e6-1c17-4c42-a271-f69d1d98ab0c",

 "HttpRequestId ": null,

 "HttpRequestClientHostIP": null,

 "auditLogEntry": {

 "sessionId": "504B3A33313831323637353835382D55523A343030303333303030303126092018",

 "timestamp": "2018-09-26T07:51:52.1919403Z",

 "activityId": "00000000-0000-0000-0000-000000000000",

 "messageId": "31e8bf86-35d4-410f-9a39-cce7442f44b3",

 "eventId": 0,

 "description": "URN:IVIS:100001:XSD-ErrorReport-IVISErrorReport-v1-1-TYPE-SystemMetadata",

 "serviceMetadata": { "machineName": "APP1-DEV-VDAA" },

 "endpointIdentitfier": "IdentitySelector.LVP.STS",

 "details": "",

 "sender": {

 "senderId": "PK:31812675858-UR:40003300001",

 "senderType": 3,

 "senderMetadata": {

 "firstName": "Custom",

 "lastName": "Tester"

 }

 },

 "actionType": "IdentityRequestResponse",

 "subjects": [

 {

 "subjectId": "192.168.100.163",

 "subjectType": "IPAddress"

 }

]

 }

 }

}

4.3.5.6. Lietojumu, kas izmanto v1.0.x bibliotēkas pārkonfigurācija uz
auditēšanu ar Serilog

Lai novirzītu audita rakstīšanu RabbitMQ rindā lietotnēm, kuras nav paredzēts pārstrādāt, un kuras

tika veidotas uz .NET2.0, .NET3.0, .NET3.5, .NET4.0, .NET4.5 bāzes, izmantojot Diagnostics v1.0.x

bibliotēkas ir jāveic šādas darbības:

1. Atjaunojiet žurnalēšanas bibliotēkas šādām vai jaunākām v1.0.x versijām (pieejamas

VDAA nuget https://nexus.vraa.gov.lv/repository/eservices-nuget /):

i. Abc.Diagnostics v1.0.16 (Diagnostic.dll);

Install-Package Abc.Diagnostics -Version 1.0.16 -Source

https://nexus.vraa.gov.lv/repository/eservices-nuget/

ii. Ivis.Diagnostics v1.0.12-rc03 (IVIS.Diagnostics.dll).

Install-Package IVIS.Diagnostics -Version 1.0.12-rc03 -Source

https://nexus.vraa.gov.lv/repository/eservices-nuget/

2. Pievienojiet Viss.Diagnostics.Serilog bibliotēka ar šādu vai jaunāku v1.0.x versiju

(pieejama VDAA nuget https://nexus.vraa.gov.lv/repository/eservices-nuget/):

i. Viss.Diagnostics.Serilog v1.0.0-rc03 (Viss.Diagnostics.Serilog.dll).

3. Pievienojiet šādas Serilog un Rabbit bibliotēkas:

i. RabbitMQ.Client v4.1.3;

ii. Serilog v2.7.1;

iii. Serilog.Filters.Expressions v2.0.0;

iv. Serilog.Settings.AppSettings v2.2.2;

v. Serilog.Sinks.PeriodicBatching v2.1.1;

vi. Serilog.Sinks.RabbitMQ v2.0.3-with-audit00;

vii. Superpower v2.1.0;

https://nexus.vraa.gov.lv/repository/eservices-nuget/
https://nexus.vraa.gov.lv/repository/eservices-nuget/

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 54 (64
)

viii. Serilog.Sinks.File v4.0.0.

4. Lai vecajām lietotnēm nokonfigurētu rakstīt RabbitMQ rindā tikai auditu, bet pārējo

žurnalēšanas konfigurāciju neskartu, izmainiet sekcija diagnosticConfiguration:

<diagnosticConfiguration type="Diagnostic.RoutedLogWriter, Diagnostic"

defaultCategory="category">

 <filters>

 <filter categories="Audit" type="Viss.Diagnostics.Serilog.VissSerilogWriter,

Viss.Diagnostics.Serilog" />

 <filter categories="*" type="Diagnostic.DefaultLogWriter, Diagnostic" />

 </filters>

</diagnosticConfiguration>

Ja auditu ir nepieciešams novirzīt rakstīšanai arī svclog datnē, ir jāizmaina filtrēšanas

nosacījumi uz šādiem, papildus informāciju par ziņojumu maršrutēšanu skatīt 4.3.5.3.1.

paragrāfā:

<filter categories="*,Audit" type="Diagnostic.DefaultLogWriter, Diagnostic" />

5. konfigurējiet savienojumu ar rindu, skatīt 4.3.5.3.paragrāfā.

6. Ar konfigurācijas palīdzību pārslēdziet lietojumu, lai izmantotu vismaz .NET4.5.2. Katra

lietojuma konfigurācija var atšķirties atkarībā no tā tipa un funkcionalitātes, piemēram:

i. konsoles lietojumā:

<configuration>

<startup>

 <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.5.2"/>

</startup>

</configuration>

i. web lietojumā:

<configuration>

<compilation targetFramework="4.0">

...

</configuration>

4.3.6. Notifikācija V1
Sekcijā system.diagnostics pievienojiet elementu source ar nosaukumu Notification un norādiet

vērtību swithValue uz All.

Pie source elementa pievienojiet NotificationTraceListener un norādiet parametrus host,

TransformationUrn, MessageTitle.

<system.diagnostics>

 <sources>

 <source name="Notification" switchValue="All">

 <listeners>

 <add name="NotificationTraceListener"

type="IVIS.Diagnostics.NotificationServiceTraceListener, IVIS.Diagnostics"

initializeData="https://{host}/Notification/v1-0/soap11"

transformationSchemaURN="{$TransformationUrn}" defaultMessageTitle="{$MessageTitle}" />

 </listeners>

 </source>

 </sources>

</system.diagnostics>

4.3.7. Notifikācija V2
Sekcijā system.diagnostics pievienojiet elementu source ar nosaukumu Notification un norādiet

vērtību swithValue uz All.

Pie source elementa pievienojiet Notification2TraceListener un norādiet parametrus

TransformationUrn, MessageTitle.

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 55 (64
)

<system.diagnostics>

 <sources>

 <source name="Notification" switchValue="All">

 <listeners>

 <add name="Notification2TraceListener"

type="IVIS.Diagnostics.NotificationService2TraceListener, IVIS.Diagnostics"

initializeData="NotificationEndpoint" defaultMessageTitle="{$MessageTitle}" />

 </listeners>

 </source>

 </sources>

</system.diagnostics>

Konfigurējiet NotificationEndpoint pie notifikācijas servisa V2, saskaņā WCF vadlīnijām.

4.4. Žurnalēšana sekošanas programmatūrai

System.diagnostics sekcijā pievienojiet source elementu un norādiet swithValue uz Error. Source

elementam pievienojiet LogEventLogTraceListener, norādot parametru initializeData.

<system.diagnostics>

 <sources>

 <source name="{$LogName}" switchValue="Error">

 <listeners>

 <add name="LogEventLogTraceListener" type="IVIS.Diagnostics.LogEventLogTraceListener,

IVIS.Diagnostics" initializeData="TraceListenerLog" />

 </listeners>

 </source>

 </sources>

</system.diagnostics>

Ja notikumu žurnāla avots, kas ir saistīts ar EventLogTraceListener nepastāv, tad tiek izveidots jauns

notikumu avots. Lai izveidotu notikumu avotu operētājsistēmā Windows Vista, Windows XP

Professional vai Windows Server 2003, jums ir jābūt administratora tiesībām.

Lai izvairītos no iespējas rakstīt lielu datu apjomu, notikumu žurnālam EventLogTraceListener

neizsniedz izvēles datus, kas definēti raceOutputOptions parametrā.

4.5. Asinhronā žurnalēšana

Asinhronā logošana un audita rakstīšana ļauj atslogot datubāzes serverus, tādējādi uzlabojot

sistēmas ātrdarbību.

SystemJournal V2.0
AbcDiagnosticsProxy

MSMQ
Distributor

Service
Destination

Queue

DAIRM V2.0

App

MsmqTraceListener

App

MsmqTraceListener

IVIS.Diagnostics.dll

Abc.Diagnostics.EntrLib.dllEnterprise LibraryEnterprise Library

Enterprise Library

Abc.Diagnostics.dll

Abc.Diagnostics.dll

15.attēls. Asinhronas logošanas un audita diagramma

4.5.1. Asinhronas logošanas konfigurācijas scenārija izvēle
Iespējami dažādi konfigurācijas scenāriji, kuri atkarīgi no .NET Framework un Enterprise Library

versijām. Šajā dokumenta tiks izskatīti izplatītākie.

Izvēles scenārijs:

1. Aizejiet uz programmas palaišanas mapi;

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 56 (64
)

2. Meklējiet datni Diagnostic.dll vai Abc.Diagnostics.dll;

3. Ja ir Diagnostic.dll, tad konfigurācija būs kā .NET3.5 projektiem, ja tomēr ir

Abc.Diagnostics.dll, tad konfigurācijai jābūt kā .NET4.5 projektiem;

4. Scenārijs kad .NET4.5 projektiem nokonfigurē Enterprise Library 5.0 nav izskatīts.

4.5.2. Asinhronā logošana .NET4.5 projektiem, izmantojot Microsoft
Enterprise Library 6.0
Pievienojiet configSections elementu lietojuma konfigurācijas datnē, kā pirmo elementu pēc

configuration elementa:

<configSections>

 <section name="loggingConfiguration"

type="Microsoft.Practices.EnterpriseLibrary.Logging.Configuration.LoggingSettings,

Microsoft.Practices.EnterpriseLibrary.Logging, Version=6.0.0.0, Culture=neutral,

PublicKeyToken=31bf3856ad364e35" requirePermission="true" />

 <section name="diagnosticConfiguration"

type="Abc.Diagnostics.Configuration.DiagnosticSettings, Abc.Diagnostics, Version=1.2.0.0"/>

</configSections>

Nokonfigurējiet ABC diagnostics konfigurācijas sekciju diagnosticConfiguration

 <diagnosticConfiguration type="Abc.Diagnostics.EntrLib.EntrLibLogWriter,

Abc.Diagnostics.EntrLib60, Version=1.0.0.0" applicationIdentity="{$ApplicationIdentity}" />

Nokonfigurējiet Enterprise Library logošanas konfigurācijas sekciju loggingConfiguration

<loggingConfiguration name="Logging Application Block" tracingEnabled="true"

defaultCategory="Log" logWarningsWhenNoCategoriesMatch="true">

 <listeners>

 <add name="AuditTraceListener"

 traceOutputOptions="None"

listenerDataType="Microsoft.Practices.EnterpriseLibrary.Logging.Configuration.MsmqTraceListenerD

ata, Microsoft.Practices.EnterpriseLibrary.Logging, Version=6.0.0.0, Culture=neutral,

PublicKeyToken=31bf3856ad364e35"

 type="Microsoft.Practices.EnterpriseLibrary.Logging.TraceListeners.MsmqTraceListener,

Microsoft.Practices.EnterpriseLibrary.Logging, Version=6.0.0.0, Culture=neutral,

PublicKeyToken=31bf3856ad364e35"

 queuePath="{$MSMQAuditQueuePath}"

 formatter="BinaryFormatter"

 useDeadLetterQueue="true" />

 <add name="LogTraceListener"

 traceOutputOptions="None"

listenerDataType="Microsoft.Practices.EnterpriseLibrary.Logging.Configuration.MsmqTraceListenerD

ata, Microsoft.Practices.EnterpriseLibrary.Logging, Version=6.0.0.0, Culture=neutral,

PublicKeyToken=31bf3856ad364e35"

 type="Microsoft.Practices.EnterpriseLibrary.Logging.TraceListeners.MsmqTraceListener,

Microsoft.Practices.EnterpriseLibrary.Logging, Version=6.0.0.0, Culture=neutral,

PublicKeyToken=31bf3856ad364e35"

 queuePath="{$MSMQLogQueuePath}"

 formatter="BinaryFormatter"

 useDeadLetterQueue="true" />

 </listeners>

 <categorySources>

 <add name="Audit" switchValue="All">

 <listeners>

 <add name="AuditTraceListener" />

 </listeners>

 </add>

 <add name="Log" switchValue="All">

 <listeners>

 <add name="LogTraceListener" />

 </listeners>

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 57 (64
)

 </add>

 </categorySources>

 <specialSources>

 <allEvents switchValue="All" name="All Events"/>

 <notProcessed switchValue="All" name="Unprocessed Category" />

 <errors switchValue="All" name="Logging Errors & Warnings" />

 </specialSources>

</loggingConfiguration>

Pievienojiet bibliotēkas programmas palaišanas mapē:

• Microsoft.Practices.Unity.dll

• Microsoft.Practices.Unity.Interception.dll

• Microsoft.Practices.ServiceLocation.dll

• Microsoft.Practices.EnterpriseLibrary.Common.dll

• Microsoft.Practices.EnterpriseLibrary.Logging.dll

• Abc.Diagnostics.EntrLib60.dll

Kā alternatīvais variants ievietot šis bibliotēkas Global Assembly Cache, tad bibliotēkas būs

pieejamas visiem lietojumiem uz mašīnas. https://msdn.microsoft.com/en-

us/library/ex0ss12c(VS.80).aspx

4.5.3. Entriprise Library 6.0 MSMQDistributor to ABC diagnostics
Piemērs parāda, kā nokonfigurēt Enterprise Library 6.0 MSMQDistributer, izmantojot ABC

Diagnostics.

Pievienojiet configSections elementu MsmqDistributor.exe.config datnē, ka pirmo elementu pēc

configuration elementa:

<configSections>

 <section name="loggingConfiguration"

type="Microsoft.Practices.EnterpriseLibrary.Logging.Configuration.LoggingSettings,

Microsoft.Practices.EnterpriseLibrary.Logging, Version=6.0.0.0, Culture=neutral,

PublicKeyToken=31bf3856ad364e35" requirePermission="true" />

 <section name="diagnosticConfiguration"

type="Abc.Diagnostics.Configuration.DiagnosticSettings, Abc.Diagnostics, Version=1.2.0.0"/>

</configSections>

Nokonfigurējiet Enterprice Library logošanas sekciju loggingConfiguration
<loggingConfiguration name="" tracingEnabled="true" defaultCategory="category0"

logWarningsWhenNoCategoriesMatch="true">

 <listeners>

 <add name="Abc.Diagnostic.EntLib"

type="Abc.Diagnostics.EntLib.AbcDiagnosticsProxyTraceListener, Abc.Diagnostics.EntLib60,

Version=1.0.0.0, Culture=neutral, PublicKeyToken=null"

 listenerDataType="Abc.Diagnostics.EntLib50.AbcDiagnosticsProxyTraceListenerData,

Abc.Diagnostics.EntLib50, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null"/>

 </listeners>

 <categorySources>

 <add switchValue="All" name="category0">

 <listeners>

 <add name="Abc.Diagnostic.EntLib" />

 </listeners>

 </add>

 </categorySources>

 <specialSources>

 <allEvents switchValue="All" name="All Events" />

 <notProcessed switchValue="All" name="Unprocessed Category" />

 <errors switchValue="All" name="Logging Errors & Warnings" />

 </specialSources>

</loggingConfiguration>

https://msdn.microsoft.com/en-us/library/ex0ss12c(VS.80).aspx
https://msdn.microsoft.com/en-us/library/ex0ss12c(VS.80).aspx

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 58 (64
)

Pievienojiet diagnosticConfiguration elementu MsmqDistributor.exe.config datnē.
<diagnosticConfiguration type="Abc.Diagnostics.DefaultLogWriter, Abc.Diagnostics"/>

Pievienojiet system.diagnostics elementu MsmqDistributor.exe.config datnē.
<system.diagnostics>

 <trace autoflush="true"/>

 <sources>

 <source name="category0" switchValue="All">

 <listeners>

 <add name="Log" initializeData="log.svclog"

type="System.Diagnostics.XmlWriterTraceListener" traceOutputOptions="Timestamp"/>

 </listeners>

 </source>

 </sources>

</system.diagnostics>

4.5.4. Asinhronā logošana .NET3.5 projektiem, izmantojot Microsoft
Enterprise Library 5.0
Pievienojiet configSections elementu lietojuma konfigurācijas datnē kā pirmo elementu pēc

configuration elementa:

<configSections>

 <section name="loggingConfiguration"

type="Microsoft.Practices.EnterpriseLibrary.Logging.Configuration.LoggingSettings,

Microsoft.Practices.EnterpriseLibrary.Logging, Version=5.0.505.0, Culture=neutral,

PublicKeyToken=31bf3856ad364e35" requirePermission="true" />

 <section name="diagnosticConfiguration" type="Diagnostic.Configuration.DiagnosticSettings,

Diagnostic, Version=1.0.0.0"/>

</configSections>

Nokonfigurējiet ABC diagnostics konfigurācijas sekciju diagnosticConfiguration

 <diagnosticConfiguration type="Abc.Diagnostics.EntrLib.EntrLibLogWriter,

Abc.Diagnostics.EntrLib50, Version=1.0.0.0" applicationIdentity="{$ApplicationIdentity}" />

Nokonfigurējiet Enterprise Library logošanas konfigurācijas sekciju loggingConfiguration

<loggingConfiguration name="Logging Application Block" tracingEnabled="true"

defaultCategory="Log" logWarningsWhenNoCategoriesMatch="true">

 <listeners>

 <add name="AuditTraceListener"

 traceOutputOptions="None"

listenerDataType="Microsoft.Practices.EnterpriseLibrary.Logging.Configuration.MsmqTraceListenerD

ata, Microsoft.Practices.EnterpriseLibrary.Logging, Version=5.0.505.0, Culture=neutral,

PublicKeyToken=31bf3856ad364e35"

 type="Microsoft.Practices.EnterpriseLibrary.Logging.TraceListeners.MsmqTraceListener,

Microsoft.Practices.EnterpriseLibrary.Logging, Version=5.0.505.0, Culture=neutral,

PublicKeyToken=31bf3856ad364e35"

 queuePath="{$MSMQAuditQueuePath}"

 formatter="BinaryFormatter"

 useDeadLetterQueue="true" />

 <add name="LogTraceListener"

 traceOutputOptions="None"

listenerDataType="Microsoft.Practices.EnterpriseLibrary.Logging.Configuration.MsmqTraceListenerD

ata, Microsoft.Practices.EnterpriseLibrary.Logging, Version=5.0.505.0, Culture=neutral,

PublicKeyToken=31bf3856ad364e35"

 type="Microsoft.Practices.EnterpriseLibrary.Logging.TraceListeners.MsmqTraceListener,

Microsoft.Practices.EnterpriseLibrary.Logging, Version=5.0.505.0, Culture=neutral,

PublicKeyToken=31bf3856ad364e35"

 queuePath="{$MSMQLogQueuePath}"

 formatter="BinaryFormatter"

 useDeadLetterQueue="true" />

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 59 (64
)

 </listeners>

 <categorySources>

 <add name="Audit" switchValue="All">

 <listeners>

 <add name="AuditTraceListener" />

 </listeners>

 </add>

 <add name="Log" switchValue="All">

 <listeners>

 <add name="LogTraceListener" />

 </listeners>

 </add>

 </categorySources>

 <specialSources>

 <allEvents switchValue="All" name="All Events"/>

 <notProcessed switchValue="All" name="Unprocessed Category" />

 <errors switchValue="All" name="Logging Errors & Warnings" />

 </specialSources>

</loggingConfiguration>

Pievienojiet bibliotēkas programmas palaišanas mapē:

• Microsoft.Practices.Unity.dll

• Microsoft.Practices.Unity.Interception.dll

• Microsoft.Practices.ServiceLocation.dll

• Microsoft.Practices.EnterpriseLibrary.Common.dll

• Microsoft.Practices.EnterpriseLibrary.Logging.dll

• Abc.Diagnostics.EntrLib50.dll

4.5.5. Entriprise Library 5.0 MSMQDistributor to ABC diagnostics
Piemērs parāda, kā nokonfigurēt Enterprise Library 5.0 MSMQDistributer, izmantojot ABC

Diagnostics.

Pievienojiet configSections elementu MsmqDistributor.exe.config datnē, ka pirmo elementu pēc

configuration elementa:

<configSections>

 <section name="loggingConfiguration"

type="Microsoft.Practices.EnterpriseLibrary.Logging.Configuration.LoggingSettings,

Microsoft.Practices.EnterpriseLibrary.Logging, Version=5.0.505.0, Culture=neutral,

PublicKeyToken=31bf3856ad364e35" requirePermission="true" />

 <section name="diagnosticConfiguration" type="Diagnostic.Configuration.DiagnosticSettings,

Diagnostic, Version=1.0.0.0"/>

</configSections>

Nokonfigurējiet Enterprice Library logošanas sekciju loggingConfiguration
<loggingConfiguration name="" tracingEnabled="true" defaultCategory="category0"

logWarningsWhenNoCategoriesMatch="true">

 <listeners>

 <add name="Abc.Diagnostic.EntLib"

type="Abc.Diagnostics.EntLib50.AbcDiagnosticsProxyTraceListener, Abc.Diagnostics.EntLib50,

Version=1.0.0.0, Culture=neutral, PublicKeyToken=null"

 listenerDataType="Abc.Diagnostics.EntLib50.AbcDiagnosticsProxyTraceListenerData,

Abc.Diagnostics.EntLib50, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null"/>

 </listeners>

 <categorySources>

 <add switchValue="All" name="category0">

 <listeners>

 <add name="Abc.Diagnostic.EntLib" />

 </listeners>

 </add>

 </categorySources>

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 60 (64
)

 <specialSources>

 <allEvents switchValue="All" name="All Events" />

 <notProcessed switchValue="All" name="Unprocessed Category" />

 <errors switchValue="All" name="Logging Errors & Warnings" />

 </specialSources>

</loggingConfiguration>

Pievienojiet diagnosticConfiguration elementu MsmqDistributor.exe.config datnē.
<diagnosticConfiguration type="Diagnostic.DefaultLogWriter, Diagnostic"/>

Pievienojiet system.diagnostics elementu MsmqDistributor.exe.config datnē.
<system.diagnostics>

 <trace autoflush="true"/>

 <sources>

 <source name="category0" switchValue="All">

 <listeners>

 <add name="Log" initializeData="log.svclog"

type="System.Diagnostics.XmlWriterTraceListener" traceOutputOptions="Timestamp"/>

 </listeners>

 </source>

 </sources>

</system.diagnostics>

4.6. Lietojuma identifikācija

Rakstot auditu un žurnālu datubāzē, jānorāda lietojuma identifikators, lai vieglāk meklētu ierakstus.

Rakstot datubāze, lietojuma identifikators jānorāda ApplicationIdentity parametrā, skat. 4.3.2, 4.3.4.

sadaļās.

Ja audits un žurnāls tiek rakstīts asinhroni, izmantojot Enterprise Library, tad lietojuma identifikatoru

jānorāda ApplicationIdentity parametrā, skat. 4.5.2, 4.5.4. sadaļās.

4.7. Logošanas bibliotēku mijiedarbība

Logošanās bibliotēku mijiedarbība redzama 16.attēlā.

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 61 (64
)

Abc.Diagnostics.dll

IVIS.Diagnostics.dll extensions for Abc.Diagnostics.dll

.NET System Diagnostics

TextWriterTraceLIstener
DelimetedTextTraceListener
XmlWriterTraceListener
EventLogTraceListener

Enterprice Library Logging

FormatedDatabaseTraceListener
EmailTraceListener
FormatedEventLogTraceListener
FormatedTextWriterTraceListener
FlatFileTraceListener
MsmqTraceListener
RolllingFlatFileTraceListenr
WMITraceListenr
XmlTraceListener

LogDataBaseTraceListener Depricated
LogEventLogTraceListener
LogFlatFileTraceListener
LogServiceTraceListener Removed
AuditDataBaseTraceListener Depricated
AuditServiceTraceListener Removed
NotificationTraceListener
NotificationServiceTraceListener
SystemJournalDatabaseTraceListener
DairmDatabaseTraceListener
NotificationService2TraceListener

Abc.Diagnostics.EntLib50.dll
extensions for EntrLib

AbcDiagnosticsProxyTraceListener

Essenttial Diagnostics extensions
dfor .NET System Diagnostics

RollingFlatTraceLIstener
RollingXmlTraceListener
EmailTraceListener
BufferedEmailTraceListener
SeqTraceListener

16.attēls. Datu plūsma starp bibliotēkām

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 62 (64
)

5. Abc.Analytics.Serilog - Žurnalēšana no konteinerizētām

komponentēm

Notikumu žurnalēšanai no VDAA Kubernetes platformā izmitinātām .Net Core komponentēm ir

jāizmanto Abc.Analytics.Serilog un Abc.Analytics.Serilog.AspNetCore bibliotēkas.

5.1. Notikumu žurnalēšana

Tā kā komponentes tiek izmitinātas Docker konteineros, lai veiksmīgi veiktu notikumu žurnalēšanu

nepieciešams ņemt vērā šo konteineru darbības īpatnības. Tā kā katra Docker konteinera dzīves

laiku pilnībā kontrolē Docker dzinējs (engine), un tas var pabeigt jebkuru konteineru potenciāli

jebkurā laika momentā, konteineros darbojošos lietotņu žurnalēšanas ierakstus nedrīkst glabāt

pašos konteineros — jo tie pazudīs, kad konteiners tiek pabeigts. Tāpēc izstrādātajiem jānodrošina

žurnalēšana izmantojot standarta izejas plūsmas (stdout) tehniku, kad žurnalēšanas ierakstus raksta

vienotajā plūsmā, kura, ar Docker dzinēja un attiecīgās operētājsistēmas palīdzību tiek novirzīta

montētajā informācijas sējumā (volume).

Docker žurnalēšanas dzinis uzskata katru rindu (rindkopu) kā atsevišķu ziņojumu — kad tiek

izmantots Docker žurnalēšanas dzinis, vairākrindu ziņojumi netiek atbalstīti. Tāpēc izstrādātāju

atbildībā ir nodrošināt, lai katrs atsevišķs žurnalēšanas ieraksts nesaturētu sevī rindas beigu

rakstzīmi.

No šī informācijas sējuma (tajā esošajām datnēm) žurnalēšanas aģents patstāvīgi nolasa

žurnalēšanas ierakstus un saglabā tos žurnāla datubāzē (skat. 5. attēlu) JSON formātā (skat. 3.

tabulu).

1.attēls. Žurnalēšanas ierakstu saglabāšana datubāzē

3.tabula

Žurnāla ieraksta JSON formāts

LAUKS OBLIGĀTS VĒRTĪBA

Action Jā “journal”

Payload Jā

• Timestamp Jā Notikuma reģistrēšanas datums un laiks
datubāzē (tehniska informācija), kā
DateTimeOffset.

• Level Jā Viena no šādām vērtībām:

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 63 (64
)

LAUKS OBLIGĀTS VĒRTĪBA

“Verbose“,

“Debug“,

“Information“,

“Warning“,

“Error“,

“Fatal“.

MessageTemplate Nē Ieraksta veidne MessageTemplate
formātā — pēc
https://messagetemplates.org/ notācijas.

Message Jā, ja nav norādīts
Exception

Vienkārša teksta (plain text, bez HTML)
pilnīgi atveidots (rendered) ziņojums UTF-
8 kodējumā.

Exception Jā, ja nav norādīts
Message

Kļūdas detalizēts apraksts.

Properties Nē Visas notikuma īpašību vērtības, kas
neparādās citur izvadē.

Veicot notikumu žurnalēšanu, jāievēro šādi pamatnosacījumi:

• ieraksti jāraksta lietotnes standarta izejas plūsmā (stdout);

• lai nodrošinātu korektu žurnālēšanas ierakstu saglabāšanu datubāzē, jānodrošina ierakstu

veidošana atbilstoši vienotajam žurnalēšanas ierakstu JSON formātam (skat. 3. tabulu);

• lai nodrošinātu to, ka dažādās vides var tikt pielietota citādāka žurnalēšanas politika,

žurnalēšanas minimālā līmeņa vērtību nepieciešams ielādēt no attiecīgā konteinera vides

parametriem;

• ieraksti nesatur jaunas rindas rakstzīmi.

5.2. Žurnalēšanas klašu izmantošana

Notikumu žurnalēšana tiek nodrošināta, izmantojot pielāgotu standarta .NET Core žurnalēšanas

abstrakcijas (Microsoft.Extensions.Logging.ILogger<T>) Serilog realizāciju. Lai pievienotu

notikumu žurnalēšanu, nepieciešams:

• pievienot NUGET pakotnes

o Abc.Analytics.Serilog

o Abc.Analytics.Serilog.AspNetCore

• pievienot žurnalēšanas konfigurāciju, izmantojot

Microsoft.AspNetCore.Hosting.IWebHostBuilder paplašinājuma

Abc.Analytics.Serilog.AspNetCore.UseSerilog metodi. JsonFormatter klase jāņem

tieši no Abc.Analytics.Serilog bibliotēkas.

Piemērs:

https://messagetemplates.org/

© Valsts digitālās attīstības aģentūra Koplietojuma bibliotēku apraksts

 Datums: 22.10.2024. Versija: 1.15

 Lpp.: 64 (64
)

...

using Abc.Analytics.Serilog;

using Abc.Analytics.Serilog.AspNetCore;

public class Program {

...

public static IHostBuilder CreateHostBuilder(string[] args) {

 var environmentLoggingLevelSwitch =

Enum.TryParse(Environment.GetEnvironmentVariable("Serilog__MinimumLevel"),

true, out LogEventLevel level)

 ? new LoggingLevelSwitch(level)

 : new LoggingLevelSwitch(LogEventLevel.Information);

 return Host.CreateDefaultBuilder(args)

 .ConfigureWebHostDefaults(webBuilder => {

 webBuilder.UseStartup<Startup>();

 webBuilder.UseSerilog(

 configureLogger: (provider, context,

loggerConfiguration) => {

 loggerConfiguration

 .MinimumLevel.ControlledBy(environmentLogg

ingLevelSwitch)

 .MinimumLevel.Override("Microsoft",

environmentLoggingLevelSwitch.MinimumLevel)

 .MinimumLevel.Override("System",

environmentLoggingLevelSwitch.MinimumLevel)

 .Enrich.FromLogContext()

 .Enrich.WithHttpContext(provider)

 .WriteTo.Console(new JsonFormatter());

 });

 });

 }

...

}

